4.6 Article

Evaporation-induced self-assembly synthesis of Ni-doped mesoporous SnO2 thin films with tunable room temperature magnetic properties

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 5, Issue 22, Pages 5517-5527

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc01128h

Keywords

-

Funding

  1. Generalitat de Catalunya [2014-SGR-1015]
  2. Fondo Europeo de Desarrollo Regional, FEDER from the Spanish Ministerio de Economia y Competitividad (MINECO) [MAT2014-57960-C3-1-R]
  3. European Research Council [648454]
  4. China Scholarship Council (CSC) [201406220145]
  5. French Agence Nationale pour la Recherche (ANR) [ANR-16-CE09-0006-01]
  6. MINECO [RYC-2012-10839]

Ask authors/readers for more resources

Mesoporous Ni-doped SnO2 thin films synthesized from variable [Ni(II)/Sn(IV)] molar ratios (0 : 100, 5 : 95, 10 : 90, 15 : 85 and 20 : 80), thicknesses in the range of 100-150 nm, and average pore sizes lower than 10 nm were obtained through a sol-gel based self-assembly process using Pluronic P-123 as a structure-directing agent. Grazing incidence X-ray diffraction experiments indicate that the films mostly possess a tetragonal SnO2 structure with Ni2+ in substitutional positions, although energy-dispersive X-ray analyses also reveal the occurrence of small NiO clusters in the films produced from high [Ni(II)/Sn(IV)] molar ratios (corresponding to a Ni amount of 8.6 at%). X-ray photoelectron spectroscopy experiments indicate the lack of metallic Ni and the occurrence of oxygen vacancies in the mesoporous films. Interestingly, the magnetic properties of these mesoporous films significantly vary as a function of the doping percentage. The undoped SnO2 films exhibit a diamagnetic behavior, whereas a clear paramagnetic signal dominates the magnetic response of the Ni-doped mesoporous films, probably due to the presence of NiO as a secondary phase. A small ferromagnetic-like contribution superimposed to the paramagnetic background is observed for samples with high Ni contents, possibly stemming from the combined effect from Ni incorporation and the occurrence of oxygen vacancies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Chemistry, Multidisciplinary

Metal-Induced Crystallization in Metal Oxides

Clement Sanchez, Glenna L. Drisko, Laurent Lermusiaux, Antoine Mazel, Adrian Carretero-Genevrier

Summary: The properties of a material depend on its crystalline state, with next generation solid-state technologies aiming to integrate crystalline oxides into composite materials using low temperature crystallization techniques such as metal-induced crystallization (MIC). MIC involves introducing small amounts of a cation to reduce crystallization temperature in metal oxides, providing a means to tune purity and crystalline phase ratios. MIC is a cost-effective and efficient method for achieving crystallization in solid state materials.

ACCOUNTS OF CHEMICAL RESEARCH (2022)

Article Materials Science, Multidisciplinary

Lightweight macroporous Co-Pt electrodeposited films with semi-hard-magnetic properties

Cristina Navarro-Senent, Konrad Eiler, Salvador Pane, Jordi Sort, Eva Pellicer

Summary: In this study, macroporous and partially L1(0)-ordered Co-Pt films were successfully synthesized using colloidal crystal templating and electrodeposition. The films showed increased coercivity and preserved the porosity after annealing. This work demonstrates the potential technological applications of the combination of colloidal crystal templating and electrodeposition in lightweight semi-hard magnets.

MATERIALS & DESIGN (2022)

Article Chemistry, Applied

PS-b-P4VP block copolymer micelles as a soft template to grow openly porous nickel films for alkaline hydrogen evolution

Roberto Fagotto Clavijo, Marta Riba-Moliner, Arantzazu Gonzalez-Campo, Jordi Sort, Eva Pellicer, Konrad Eiler

Summary: Highly porous Ni films were synthesized using custom-made PS-b-P4VP block copolymer micelles as a soft template. The Ni films exhibited large pores with diameters varying from 25 to 600 nm (1:1) and from 10 to 230 nm (1:4). Compared to dense Ni films and highly mesoporous Ni films with monodisperse 10 nm wide pores, the porous Ni films showed significantly improved electrocatalytic performance for hydrogen evolution reaction (HER) in alkaline media, with lower overpotential and better long-term stability.

CATALYSIS TODAY (2023)

Article Chemistry, Multidisciplinary

Efficient Tumor Eradication at Ultralow Drug Concentration via Externally Controlled and Boosted Metallic Iron Magnetoplasmonic Nanocapsules

Arnon Fluksman, Aritz Lafuent, Zhi Li, Jordi Sort, Silvia Lope-Piedrafita, Maria Jose Esplandiu, Josep Nogues, Alejandro G. Roca, Ofra Benn, Borja Sepulveda

Summary: In this study, metal iron based magnetoplasmonic drug-loaded nanocapsules (MAPSULES) were developed to enhance the efficacy of cancer nanotherapies locally. The MAPSULES combine powerful external magnetic concentration in the tumor and efficient photothermal actuation to boost the drug therapeutic action at ultralow drug concentrations. The results show that this approach has the potential to significantly amplify the therapeutic effects of drugs for different diseases.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Frequency-dependent stimulated and post-stimulated voltage control of magnetism in transition metal nitrides: towards brain-inspired magneto-ionics

Zhengwei Tan, Julius de Rojas, Sofia Martins, Aitor Lopeandia, Alberto Quintana, Matteo Cialone, Javier Herrero-Martin, Johan Meersschaut, Andre Vantomme, Jose L. Costa-Kramer, Jordi Sort, Enric Menendez

Summary: Magneto-ionics is a promising technology for energy-efficient spintronics, but the post-stimulated behavior of magneto-ionic systems is not well-controlled. In this study, we demonstrate a voltage-controllable N ion accumulation effect on the outer surface of CoN films, allowing for control of magneto-ionic properties during and after voltage pulse actuation. This effect has potential applications in neuromorphic computing, such as post-stimulated neural learning.

MATERIALS HORIZONS (2023)

Article Chemistry, Multidisciplinary

Electrochemical Synthesis, Magnetic and Optical Characterisation of FePd Dense and Mesoporous Nanowires

Deepti Raj, Gabriele Barrera, Federico Scaglione, Federica Celegato, Matteo Cialone, Marco Coisson, Paola Tiberto, Jordi Sort, Paola Rizzi, Eva Pellicer

Summary: Dense and mesoporous FePd nanowires were successfully fabricated using template- and micelle-assisted pulsed potentiostatic electrodeposition. The structural and magnetic properties of the nanowires were investigated, and it was found that the mesoporous core and dense shell structure slightly affected the magnetic properties. Moreover, the mesoporous nanowires showed excellent performance as SERS substrates for the detection of 4,4'-bipyridine, attributed to the mesoporous morphology and the close proximity of the embedded nanowires enabling localized surface plasmon resonance.

NANOMATERIALS (2023)

Editorial Material Chemistry, Multidisciplinary

Special Feature: Permanent and Long-Term Biodegradable Biomaterials

Jordi Sort

APPLIED SCIENCES-BASEL (2022)

Article Chemistry, Physical

Enhancing magneto-ionic effects in cobalt oxide films by electrolyte engineering

Sofia Martins, Zheng Ma, Xavier Solans-Monfort, Mariona Sodupe, Luis Rodriguez-Santiago, Enric Menendez, Eva Pellicer, Jordi Sort

Summary: This study improves the magneto-ionic performance of electrolyte-gated cobalt oxide thin films by adding inorganic salts. The simulations show that potassium iodide favors the accumulation of positive charge on the cobalt oxide surface. The experiments demonstrate a significant enhancement of room temperature magneto-ionics in cobalt oxide films with the presence of potassium iodide in the electrolyte.

NANOSCALE HORIZONS (2022)

Article Nanoscience & Nanotechnology

A Multilevel Magnetic Synapse Based on Voltage-Tuneable Magnetism by Nitrogen Ion Migration

P. Monalisha, Zheng Ma, Eva Pellicer, Enric Menendez, Jordi Sort

Summary: This study exploits voltage-driven nitrogen ion motion in transition metal nitride thin films to emulate biological synapses, achieving distinct multilevel non-volatile magnetic states and successfully simulating essential synaptic functionalities of the human brain. The device exhibits excellent synaptic properties and is suitable for hardware implementation of neuromorphic computing.

ADVANCED ELECTRONIC MATERIALS (2023)

Article Nanoscience & Nanotechnology

Highly cyclable voltage control of magnetism in cobalt ferrite nanopillars for memory and neuromorphic applications

Muireann de h-Ora, Aliona Nicolenco, P. Monalisha, Tuhin Maity, Bonan Zhu, Shinbuhm Lee, Zhuotong Sun, Jordi Sort, Judith MacManus-Driscoll

Summary: Tuning the properties of magnetic materials through voltage-driven ion migration allows for energy-efficient and non-volatile magnetic memory and neuromorphic computing. We demonstrated significant changes in magnetic moment and coercivity in an array of CFO nanopillar electrodes with an applied voltage, along with fast magneto-ionic response and high cyclability. The magnetic switching is attributed to the modulation of oxygen content in CFO, and the self-assembled nanopillar structures emulate various synaptic behaviors for analog computing and high-density storage. CFO nanopillar arrays have the potential to be used as interconnected synapses for advanced neuromorphic computing applications.

APL MATERIALS (2023)

Article Multidisciplinary Sciences

Wireless magneto-ionics: voltage control of magnetism by bipolar electrochemistry

Zheng Ma, Laura Fuentes-Rodriguez, Zhengwei Tan, Eva Pellicer, Llibertat Abad, Javier Herrero-Martin, Enric Menendez, Nieves Casan-Pastor, Jordi Sort

Summary: Magneto-ionics is a unique approach to control magnetism with electric field. This study demonstrates wireless control of magnetism through induced polarization in conducting materials, providing a new pathway for voltage-driven magnetism control. The results have potential applications in various fields such as bioelectronics, catalysis, neuromorphic computing, and wireless communications.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Biodegradable porous FeMn(-xAg) alloys: assessment of cytocompatibility, mechanical, magnetic and antibiofilm properties

Aleksandra Bartkowska, Oriol Careta, Adam Benedict Turner, Andreu Blanquer, Elena Ibanez, Margarita Trobos, Carme Nogues, Eva Pellicer, Jordi Sort

Summary: Porous FeMn(-xAg) alloys were fabricated through powder metallurgy methods. The effects of porosity and Ag addition on the microstructure, biodegradability, magnetic and mechanical properties of the alloys were investigated. Cytocompatibility, inflammatory cytokine response, and antibacterial effect studies were also conducted. The fabricated alloys exhibited a macro- and nanoporous structure with uniformly distributed silver particles. The biodegradability tests showed higher release of Mn compared to Fe, without significant differences between the alloys. The degradation products mainly consisted of Fe, Mn, O, and compounds enriched in Ca, P, and Cl. The as-sintered alloys showed low saturation magnetization values, which did not significantly increase with immersion time. The biocompatibility results indicated that all tested alloys were non-cytotoxic, but the addition of Ag might interfere with cell proliferation. However, the ions released by the FeMn(-xAg) alloys did not induce an inflammatory response in macrophages. The obtained results on microbiological interactions revealed a significant reduction in the total biofilm biomass of both live and dead bacteria after 24 hours in Ag containing FeMn-5Ag surfaces, although no significant bactericidal effect was observed at 4 hours between FeMn control and FeMn-5Ag.

MATERIALS ADVANCES (2023)

Article Materials Science, Multidisciplinary

Translating efficient fluorescence into persistent room-temperature phosphorescence by doping bipolar fluorophores into polar polymer matrix

Mengjiao Dong, Liyun Liao, Chensheng Li, Yingxiao Mu, Yanping Huo, Zhong-Min Su, Fushun Liang

Summary: This study investigates the influence of the polarity of polymer matrices on persistent room-temperature phosphorescence (pRTP). It is discovered that intense phosphorescence emission can be achieved in highly polar matrices such as polyacrylic acid (PAA). The dipole-dipole interaction between the polar fluorophore and polar matrix is proposed to stabilize the excited state and facilitate the generation of efficient room-temperature phosphorescence emissions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

High spatial resolution X-ray scintillators based on a 2D copper(i) iodide hybrid

Han-Jiang Yang, Weijia Xiang, Xiangzhou Zhang, Jin-Yun Wang, Liang-Jin Xu, Zhong-Ning Chen

Summary: This article reports a 2D copper(I)-based cluster material for X-ray imaging, which exhibits ultra-high spatial resolution, high photoluminescence efficiency, and low detection limit. The material shows excellent linear response to X-ray dose rates and light output, and has the best spatial resolution among reported lead-free metal halide hybrids.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Review Materials Science, Multidisciplinary

Interlayer and intermolecular excitons in various donor-acceptor heterostructures: applications to excitonic devices

Taek Joon Kim, Sang-hun Lee, Dayeong Kwon, Jinsoo Joo

Summary: Donor-acceptor heterostructures using organic-inorganic halide perovskites, two-dimensional transition metal dichalcogenides, pi-conjugated organic small/macro molecules, and quantum dots are promising platforms for exciton-based photonics and optoelectronics. Hetero-interlayer excitons and hetero-intermolecular excitons formed through optical and/or electrical charge transfer in various heterostructures are important quasi-particles for light emission, detection, and harvesting systems.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Designing CMOS compatible efficient ohmic contacts to WSi2N4 via surface-engineered Mo2B monolayer electrodes

Liemao Cao, Xiaohui Deng, Zhen-kun Tang, Rui Tan, Yee Sin Ang

Summary: We investigate the interface properties between WSi2N4 and Mo2B, O-modified Mo2B, and OH-modified Mo2B nanosheets. We find that WSi2N4 and Mo2B form n-type Schottky contacts, while functionalizing Mo2B with O and OH leads to the formation of both n-type and p-type ohmic contacts with WSi2N4. Additionally, we demonstrate the emergence of quasi-ohmic contact with ultralow lateral Schottky barrier and zero vertical interfacial tunneling barriers in Mo2B(OH)2-contacted WSi2N4.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Soft nanocomposites of lead bromide perovskite and polyurethane prepared via coordination chemistry for highly flexible, stable, and quaternary metal alloy-printed light emitting diodes

Ga Eun Kim, Hae-Jin Kim, Heesuk Jung, Minwoo Park

Summary: This study presents a solution to the commercialization challenges of flexible LEDs based on MAPbBr(3) by incorporating polyurethane and an In-Ga-Zn-Sn liquid alloy. The designed devices showed high flexibility, efficiency, and durability, with improved electron injection and reduced defects, making them promising for next-generation displays.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Elucidating the effects of the sidechain substitution direction on the optoelectronic properties of isomeric diketopyrrolopyrrole-based conjugated polymers for near-infrared organic phototransistors

Tao Shen, Zeng Wu, Zhen Jiang, Dongsheng Yan, Yan Zhao, Yang Wang, Yunqi Liu

Summary: Sidechain engineering is an important molecular design strategy for tuning the solid-state packing and structural ordering of conjugated polymers. The effects of sidechain direction on the optoelectronic properties of polymers and device performance were systematically investigated in this study. The results demonstrate that tuning the sidechain substitution direction can effectively improve the molecular structure and light absorption properties of polymers, providing new insights for the rational design of functional polymers.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Phase-engineering compact and flexible CsPbBr3 microcrystal films for robust X-ray detection

Lotte Clinckemalie, Bapi Pradhan, Roel Vanden Brande, Heng Zhang, Jonathan Vandenwijngaerden, Rafikul Ali Saha, Giacomo Romolini, Li Sun, Dirk Vandenbroucke, Mischa Bonn, Hai I. Wang, Elke Debroye

Summary: In this study, a facile strategy using a non-conductive polymer was proposed to fabricate stable, pinhole-free thick films. The effect of introducing a second phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport was investigated. The dual phase devices exhibited improved stability and more effective operation at higher voltages in X-ray detection.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Photoluminescence and structural phase transition relationship in Er-doped BaTiO3 model ferroelectric system

Jingye Zou, Shenglan Hao, Pascale Gemeiner, Nicolas Guiblin, Omar Ibder, Brahim Dkhil, Charles Paillard

Summary: When rare-earth ions are embedded in a ferroelectric material, their photoluminescence can serve as an all-optical probe for temperature, electric field, and mechanical stimulus. However, the impact of ferroelectric phase transitions on photoluminescence is not well understood. In this study, we demonstrate changes in the photoluminescence of green emission bands during critical ferroelectric transitions in an Er-doped BaTiO3 material. We also find that the intensity ratio and wavelength position difference of sub-peaks provide information on the phase transitions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Resonant tunneling induced large magnetoresistance in vertical van der Waals magnetic tunneling junctions based on type-II spin-gapless semiconductor VSi2P4

Jiangchao Han, Daming Zhou, Wei Yang, Chen Lv, Xinhe Wang, Guodong Wei, Weisheng Zhao, Xiaoyang Lin, Shengbo Sang

Summary: Rare type-II spin-gapless semiconductors (SGSs) have attracted increasing attention due to their unique spin properties. In this study, the interface contacts and spin transport properties of different devices composed of VSi2P4 ferromagnetic layers were investigated. The results show that VSi2P4 is a promising material for designing vertical van der Waals heterostructures with a giant tunnel magnetoresistance (TMR) in spintronic applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Design of Cr-Ba-doped γ-Ga2O3 persistent luminescence nanoparticles for ratiometric temperature sensing and encryption information transfer

Tianqi Zhao, Renagul Abdurahman, Qianting Yang, Ruxiangul Aiwaili, Xue-Bo Yin

Summary: In this study, we designed and prepared Cr and Ba-doped gamma-Ga2O3 nanoparticles to achieve near-infrared emission and enhance the emission intensity. The emission mechanism was proposed based on the trap depth, band gap, and energy levels of Cr ions. The ratiometric temperature sensing and encryption information transfer demonstrated the potential applications of this technology.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Spin-gapless semiconducting characteristics and related band topology of quaternary Heusler alloy CoFeMnSn

Shuvankar Gupta, Jyotirmoy Sau, Manoranjan Kumar, Chandan Mazumdar

Summary: In this study, a new spin-gapless semiconductor material CoFeMnSn is reported, and its stable structure and spin-polarized band structure are determined through experimental realization and theoretical calculations. The compound exhibits a high ferromagnetic transition temperature, making it excellent for room temperature applications. The nearly temperature-independent resistivity, conductivity, and carrier concentration of the compound, adherence to the Slater-Pauling rule, and the high intrinsic anomalous Hall conductivity achieved through hole doping further confirm its spin-gapless semiconductor nature. Additionally, the compound's SGS and topological properties make it suitable for spintronics and magneto-electronics devices.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Two-dimensional metal-organic nanosheets composed of single-molecule magnets: structural modulation and enhanced magnetism utilizing the steric hindrance effect

Ikumi Aratani, Yoji Horii, Yoshinori Kotani, Hitoshi Osawa, Hajime Tanida, Toshiaki Ina, Takeshi Watanabe, Yohko F. Yano, Akane Mizoguchi, Daisuke Takajo, Takashi Kajiwara

Summary: In this study, two-dimensional arrays of single-molecule magnets (SMMs) based on metal-organic frameworks (MOFs) were systematically modified through Langmuir-Blodgett methods and chemical modifications. The introduction of bulky alkoxide groups induced structural changes and perpendicular magnetic anisotropy. This research provides a promising strategy for the construction of high-density magnetic memory devices using molecular spintronics.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Eulytite-type Ba3Yb(PO4)3:Tm/Er/Ho as a high sensitivity optical thermometer over a broad temperature range

Zonghao Lei, Houhe Dong, Lijie Sun, Bing Teng, Yanfei Zou, Degao Zhong

Summary: Researchers have successfully developed four different up-conversion phosphors based on the Eulytite-type host Ba3Yb(PO4)(3). The optical temperature sensing properties of these phosphors were thoroughly investigated, and it was found that Ba3Yb(PO4)(3):Tm/Er/Ho showed potential for optical temperature measurement applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Understanding trends in conductivity in four isostructural multifunctional crystals of Se substituted bis-dithiazolyl radicals

C. Roncero-Barrero, M. A. Carvajal, J. Ribas-Arino, I. de P. R. Moreira, M. Deumal

Summary: This study computationally investigates the conductivity of four isostructural compounds with different Se contents, and reveals the parameters that define their conductivity in stable organic radical materials. The results provide insights into the influence of Se content on the conductivity and highlight the importance of considering multiple parameters in understanding the trends in conductivity.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Interplay between oxygen vacancies and cation ordering in the NiFe2O4 spinel ferrite

Remi Arras, Kedar Sharma, Lionel Calmels

Summary: In this study, we investigated the interplay between structural defects in NiFe2O4, showing that the complex formed by a Ni-Oh/Fe-Td-cation swap and a neutral oxygen vacancy is more stable than these two isolated defects, and significantly reduces the width of the minority-spin band gap.

JOURNAL OF MATERIALS CHEMISTRY C (2024)