4.7 Article

Dynamic change of aircraft seat condition for fast boarding

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trc.2017.09.014

Keywords

Aircraft boarding; Stochastic simulation; Infrastructurel changes; Evolutionary algorithm; Optimization

Ask authors/readers for more resources

Aircraft boarding is a process mainly impacted by the boarding sequence, individual passenger behavior and the amount of hand luggage. Whereas these aspects are widely addressed in scientific research and considered in operational improvements, the influence of infrastructural changes is only focused upon in the context of future aircraft design. The paper provides a comprehensive analysis of the innovative approach of a Side-Slip Seat, which allows passengers to pass each other during boarding. The seat holds the potential to reduce the boarding time by approx. 20%, even considering operational constraints, such as passenger conformance to the proposed boarding strategy. A validated stochastic boarding model is extended to analyze the impact of the Side-Slip Seat. The implementation of such fundamental change inside the aircraft cabin demands for adapted boarding strategies, in order to cover all the benefits that accompany this new dynamic seating approach. To reasonably identify efficient strategies, an evolutionary algorithm is used to systematically optimize boarding sequences. As a result, the evolutionary algorithm depicts that operationally relevant boarding strategies implementing the Side-Slip Seat should differentiate between the left and the right side of the aisle, instead of the current operationally preferred boarding from the back to the front.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available