4.7 Article

Hard anodizing of AA2099-T8 aluminum lithium copper alloy: Influence of electric cycle, electrolytic bath composition and temperature

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 325, Issue -, Pages 627-635

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2017.07.028

Keywords

Hard anodizing; Pulsed current; Aluminum; Lithium; Intermetallic; Defect

Ask authors/readers for more resources

AA2099-T8 samples have been hard anodized in a traditional sulphuric bath with the aim of studying the influence of i) electrolyte temperature, ii) Al3+ concentration and iii) different electric cycles in direct current, multi-step direct current and pulsed current (both completely anodic cycles and with cathodic off pulses). Anodic oxide thickness, volumetric expansion ratio (V-ox/V-Al), mean hardness (HV0.05), faradic efficiency and defective state have been analyzed. As temperature decreases, the oxide hardness increases but defectiveness steeply worsens; similarly a middle compromise of Al3+ concentration ensures the best performances. Regimes of high current, from one side, and of low current and current transient, from the other side, strongly affect oxide defective state introducing different types of flaws; an appropriate balance is crucial for a performing non defected oxide. High current induces the occurrence of parasitic reactions which produce rough and defected Al/ox interface. Low current and current transient induce diffused cracking and detachments of coating fragments which decrease corrosion resistance as shown by potentiodynamic polarization tests. Li-based intermetallics play a crucial role in the last mentioned flaw-creation phenomena since they produce inhomogeneities in electric field distribution and contribute to create unstable oxide structures. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available