4.5 Article

Multiscale ordinal network analysis of human cardiac dynamics

Publisher

ROYAL SOC
DOI: 10.1098/rsta.2016.0292

Keywords

nonlinear time-series analysis; symbolic dynamics; complex networks; ordinal patterns; network entropy

Funding

  1. Australian Research Council Discovery Project [DP 140100203]

Ask authors/readers for more resources

In this study, we propose a new information theoretic measure to quantify the complexity of biological systems based on time-series data. We demonstrate the potential of our method using two distinct applications to human cardiac dynamics. Firstly, we show that the method clearly discriminates between segments of electrocardiogram records characterized by normal sinus rhythm, ventricular tachycardia and ventricular fibrillation. Secondly, we investigate the multiscale complexity of cardiac dynamics with respect to age in healthy individuals using interbeat interval time series and compare our findings with a previous study which established a link between age and fractal-like long-range correlations. The method we use is an extension of the symbolic mapping procedure originally proposed for permutation entropy. We build a Markov chain of the dynamics based on order patterns in the time series which we call an ordinal network, and from this model compute an intuitive entropic measure of transitional complexity. A discussion of the model parameter space in terms of traditional time delay embedding provides a theoretical basis for our multiscale approach. As an ancillary discussion, we address the practical issue of node aliasing and how this effects ordinal network models of continuous systems from discrete time sampled data, such as interbeat interval time series. This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available