4.6 Article

Schwann cells and neurite outgrowth from embryonic dorsal root ganglions are highly mechanosensitive

Journal

NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE
Volume 13, Issue 2, Pages 493-501

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2016.06.011

Keywords

Atomic force microscopy; Mechanosensitivity; Peripheral nervous system; Schwann cells; Nerve regeneration

Ask authors/readers for more resources

Biochemical interactions between Schwann cells (SCs) and their substrate are crucial for the peripheral nervous systems (PNS). They are among the major parameters used in the design of nerve grafts for nerve injuries treatment, yet with unsatisfactory success despite pressing need worldwide. Mounting evidence demonstrates the fundamental physiological importance of mechanical cell-substrate interactions. Substrate stiffnessmodulates cell differentiation, development, maintenance and regeneration. Mechanosensitivity may therefore be a key parameter to advancing nerve graft research. However, very little is known about PNS mechanosensitivity. Here, we explore mechanosensitivity of SCs and embryonic dorsal root ganglions (DRGs) under constant biochemical conditions but varying substrate stiffness adjusted to their physiological-developmental nature. We found SC stiffness, morphology, adhesion, motility, and neurite outgrowth from DRGs to be strongly substrate stiffness-dependent. These initial observations refine our knowledge of PNS physiology, development and regeneration, and demonstrate promise for advancing nerve grafts. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available