4.7 Article

Plant-soil feedbacks and the partial recovery of soil spatial patterns on abandoned well pads in a sagebrush shrubland

Journal

ECOLOGICAL APPLICATIONS
Volume 25, Issue 1, Pages 3-10

Publisher

ECOLOGICAL SOC AMER
DOI: 10.1890/13-1698.1

Keywords

Artemisia tridentata; autocorrelation; competition and facilitation; ecosystem structure and function; energy development and reclamation; plant-soil interactions; resilience; resistance; resource islands; restoration ecology; soil organic carbon; spatial analysis

Funding

  1. ExxonMobil Production Company

Ask authors/readers for more resources

Shrub-dominated arid and semiarid ecosystems are characterized by spatial patterns in vegetation and bare ground (e.g., resource islands). Modern oil and gas well pad construction entails complete removal of vegetation and upper soil layers, followed by replacement of soils and attempts at revegetation; historically, many pads were merely abandoned. Feedbacks between soil and vegetation are required for the recovery of ecosystem functions in these catastrophically disturbed systems. We measured soil organic carbon (SOC), employing a spatially explicit sampling protocol, on two sites in undisturbed big sagebrush communities and a chronosequence of eight recovering well pads. Sites in undisturbed communities exhibited significant spatial autocorrelation of SOC at the plot level that was absent from all of the well pad sites. Incorporating shrub presence as a covariate revealed three additional cases of SOC spatial autocorrelation on well pads. These results, along with SOC patterns between and under plants, suggest resource island development. These findings support the hypothesis that species identity as well as functional group need to be taken into account in restoration. Restoration of ecosystem functions, including those associated with resistance and resilience to disturbance, may be enhanced when characteristic soil heterogeneity and vegetation spatial patterns recover.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available