4.7 Article

Synthesis of 2-AryI-5-alkyl-fulleropyrrolidines: Metal-Free-Mediated Reaction of [60]Fullerene with Aromatic Aldehydes and Inactive Primary Amines

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 82, Issue 16, Pages 8617-8627

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.7b01507

Keywords

-

Funding

  1. National Natural Science Foundation of China [21102041, 21671061]
  2. Scientific Research Foundation of Education Commission of Hubei Province [D20161007]
  3. Innovation and Entrepreneurship Training Program for Undergraduates of Hubei Province [201610512054]

Ask authors/readers for more resources

The metal-free-mediated thermal reaction of [60]fullerene with aromatic aldehydes and inactive primary amines bearing electron-donating groups at the alpha-position afforded a series of 2-aryl-5-alkyl-fulleropyrtolidines, including the scarce 27 aryl-5-benzyl-fulleropyrrolidines as a mixture of cis and trans isomers. With rare exceptions, the mixture of, cis, and trans isomers could be easily isolated by column chromatography, with a preference of cis isomers as Major products. A plausible mechanism for the formation of fulleropyrrolidines is also proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Chemical

Modes of interaction and thermodynamic behavior of aggregation of CTAB plus BSA mixtures in diols media: effects of diols composition and temperature

Md. Anamul Hoque, Shamim Mahbub, Md. Tuhinur R. Joy, Malik Abdul Rub, Shahed Rana, Dileep Kumar, Yousef G. Alghamdi, Abdullah M. Asiri, Mohammed Abdullah Khan

Summary: The micellization behavior of CTAB and BSA mixture in different diols media was studied. The critical micelle concentration (cmc) values of the mixture decreased with increasing temperature and followed the order: cmc(1,5-PD)>cmc(1,2-PrD)>cmc(2,3-BD). The degree of micelle ionization (a) increased with carbon chain length and temperature. The thermodynamic parameters and the contribution of the solvent were also evaluated.

CHEMICAL ENGINEERING COMMUNICATIONS (2023)

Article Chemistry, Organic

Synthesis of N-Methylspiropyrrolidine Hybrids for Their Structural Characterization, Biological and Molecular Docking Studies

Mohammad Asad, Muhammad Nadeem Arshad, Abdullah M. Asiri, Mohammed T. N. Musthafa, Salman A. Khan, Mohd Rehan, Mohammad Oves

Summary: A series of novel N-methylspiropyrrolidine hybrids were synthesized using 1,3-dipolar cycloaddition reaction, and their structures, antibacterial activity, and mechanism of action were investigated.

POLYCYCLIC AROMATIC COMPOUNDS (2023)

Article Optics

Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive

Xu Liu, Bolin Zheng, Lei Shi, Shujie Zhou, Jiangtao Xu, Ziheng Liu, Jae Sung Yun, Eunyoung Choi, Meng Zhang, Yinhua Lv, Wen-Hua Zhang, Jialiang Huang, Caixia Li, Kaiwen Sun, Jan Seidel, Mingrui He, Jun Peng, Xiaojing Hao, Martin Green

Summary: This study presents a facile approach for doping spiro-OMeTAD hole-transport materials using a low-cost alkylthiol additive DDT. The incorporation of DDT allows for a more efficient and controllable doping process with reduced duration. Coordination between DDT and LiTFSI increases the dopant concentration, enhances the structural integrity of the material, and improves device performance under wetting, heat, and light stress.

NATURE PHOTONICS (2023)

Article Chemistry, Multidisciplinary

Formate Additive for Efficient and Stable Methylammonium-Free Perovskite Solar Cells by Gas-Quenching

Wenlong Song, Xin Wang, Tian Hou, Xiaoshan Li, Hongwang Chen, Yue Yu, Xiaoran Sun, Ambrish Singh, Meng Zhang

Summary: Gas-quenching is a promising technique for the fabrication of perovskite films in order to promote the commercialization of perovskite solar cells. However, it is often difficult to obtain high-quality perovskite films when handling with methylammonium-free (MA-free) perovskites. In this study, formate additives are employed to regulate the crystallization of MA-free perovskite and improve the quality of perovskite films.

CHEMISTRY-A EUROPEAN JOURNAL (2023)

Article Polymer Science

Polymer Membranes of Zeolitic Imidazole Framework-8 with Sodium Alginate Synthesized from ZIF-8 and Their Application in Light Gas Separation

Aftab Aslam Parwaz Khan, Mallikarjunagouda B. Patil, Laxmibai P. Rathod, Shivalila G. Vader, Pankaj Raizada, Pardeep Singh, Maha M. Alotaibi, Mohammad Omaish Ansari, Anish Khan, Naved Azum, Malik Abdul Rub, Muhammad Nadeem Arshad, Abdullah M. Asiri

Summary: The study assessed the potential of nanocomposite membranes (NCMs) made of sodium alginate and embedded with synthesized zeolitic imidazole framework-8 (ZIF-8) as fillers for separating gaseous mixtures generated by methane reforming. ZIF-8 crystals were synthesized through hydrothermal synthesis, with sizes ranging from 50 to 70 nm. NCMs with 15% filler loading (synthesized ZIF-8) outperformed neat polymer membranes in terms of H-2 permeability and selectivity, achieving a purity of up to 95%. However, NCMs did not perform better than neat polymer membranes in separating gas mixtures. The combination of ZIF-8 and sodium alginate as fillers is a new and worth investigating.

POLYMERS (2023)

Article Polymer Science

Carboxymethyl Cellulose/Copper Oxide-Titanium Oxide Based Nanocatalyst Beads for the Reduction of Organic and Inorganic Pollutants

Esraa M. Bakhsh, Sher Bahadar Khan, Nujud Maslamani, Ekram Y. Danish, Kalsoom Akhtar, Abdullah M. Asiri

Summary: In this study, CMC/CuO-TiO2 beads were developed as a catalyst for the reduction of organic and inorganic contaminants. These beads demonstrated excellent catalytic activity and stability.

POLYMERS (2023)

Article Polymer Science

Shockproof Deformable Infrared Radiation Sensors Based on a Polymeric Rubber and Organic Semiconductor H2Pc-CNT Composite

Muhammad Tariq Saeed Chani, Khasan S. Karimov, Tahseen Kamal, Noshin Fatima, Mohammed M. Rahman, Abdullah M. Asiri

Summary: Polymeric rubber and organic semiconductor H2Pc-CNT composite-based shockproof deformable infrared radiation (IR) sensors were fabricated using a rubbing-in technique. The sensors showed decreased resistance and impedance when exposed to IR irradiation, and the temperature coefficients of resistance (TCR) were 1.2 and 1.1 for the surface-type and sandwich-type sensors, respectively. The high TCR value and novel composition of the H2Pc-CNT composite make these devices attractive for bolometric applications, and their easy fabrication and low-cost materials make them commercially viable.

POLYMERS (2023)

Article Chemistry, Physical

A Comprehensive Study of Electrocatalytic Degradation of M-Tolylhydrazine with Binary Metal Oxide (Er2O3@NiO) Nanocomposite Modified Glassy Carbon Electrode

Tahir Ali Sheikh, Abdullah M. Asiri, Amna Siddique, Hadi M. Marwani, Md. Rezaur Rahman, Muhammad Nadeem Akhtar, Mohammed M. Rahman

Summary: A novel electrochemical current-potential (I-V) approach was developed using a highly calcined binary metal oxide (Er2O3@NiO) semiconductor nanocomposite to detect and degrade toxic chemicals in aqueous medium. The modified glassy carbon electrode based on this semiconductor nanocomposite showed selectivity towards m-tolyl hydrazine (m-Tolyl HDZN) and good affinity towards other interfering toxic chemicals. Analytical parameters were optimized and the limit of detection (LOD) for m-Tolyl HDZN was calculated.

CATALYSTS (2023)

Article Materials Science, Multidisciplinary

Discarded water hyacinth/pineapple fibers and carbon/innegra fabrics and TiC nanoparticles reinforced UV resistant polyester composites

H. Mohit, Sanjay Mavinkere Rangappa, Krittirash Yorseng, Suchart Siengchin, Hadi M. Marwani, Anish Khan, Abdullah M. Asiri

Summary: The effect of chemically treated and untreated water hyacinth/pineapple leaf, titanium carbide nanoparticles, Innegra, and carbon fabric reinforcement on the characteristics of polyester hybrid composites was studied. The chemically treated fibers showed excellent bonding with the fillers and textiles, as observed from various analysis techniques. The use of artificial neural network (ANN) for modeling the material characteristics was also investigated in this study.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Chemistry, Physical

Synthesis of N-acylated pyrazolines: Spectroscopic, crystallographic, Hirshfeld Surface, lead sensing and theoretical studies

Mohammad Asad, Muhammad Nadeem Arshad, Abdullah M. Asiri, Hadi M. Marwani, Khalid A. Alamry, Mohammad Mahboob Alam, Syed Nazreen, Ahmed A. Elhenawy, Mohammed M. Rahman

Summary: N-Acylated-2-pyrazolines (NA2Pyr) were synthesized using chalcone and hydrazine hydrate, and their structures were determined. A metal ion sensor for lead (Pb2+) was developed by combining a conducting coating binder (PEDOT:PSS) with a NA2Pyr modified electrode (NA2Pyr/GCE). The sensor exhibited high sensitivity and a wide linear dynamic range.

JOURNAL OF MOLECULAR LIQUIDS (2023)

Article Biochemistry & Molecular Biology

A Combined Experimental and Computational Study of Novel Benzotriazinone Carboxamides as Alpha-Glucosidase Inhibitors

Zunera Khalid, Syed Salman Shafqat, Hafiz Adnan Ahmad, Munawar Ali Munawar, Sadaf Mutahir, Safaa M. Elkholi, Syed Rizwan Shafqat, Rahila Huma, Abdullah Mohammed Asiri

Summary: Diabetes is a chronic metabolic disorder characterized by high blood sugar levels due to insulin deficiency or ineffective use. Alpha-glucosidase inhibitors are commonly used to control hyperglycemia, but can cause side effects. This study synthesized and tested a new series of compounds for their alpha-glucosidase inhibition potential. The compounds 14k and 14l showed strong inhibitory activity and in silico studies confirmed their interactions with the enzyme. This research provides potential candidates for the development of new antidiabetic drugs.

MOLECULES (2023)

Article Physics, Applied

Magnetic and Thermal Hysteresis in Monolayer Anthracene-Type Nanostructures

Aftab Aslam Parwaz Khan, Z. Fadil, Pankaj Raizada, Pardeep Singh, Maha Alotaibi, Mohammad Omaish Ansari, Anish Khan, Abdullah M. Asiri, Chaitany Jayprakash Raorane

Summary: A monolayer anthracene-like nanostructure was studied through Monte Carlo simulations to determine its compensation temperature and magnetic hysteresis cycle. The effects of exchange coupling on compensation and transition temperatures were discussed. The study also investigated the magnetic hysteresis cycles and surface of multi-loop hysteresis with respect to strong exchange coupling and temperature parameters. This research has significant implications for multi-state memories and nanotechnology.
Review Chemistry, Multidisciplinary

Two-dimensional MXenes as Emerging Materials: A Comprehensive Review

Umer Shahzad, Hadi M. Marwani, Mohsin Saeed, Abdullah M. Asiri, Mohammed M. Rahman

Summary: Due to their unique two-dimensional layered microstructure, MXenes are considered promising candidates for addressing energy and environmental issues, thanks to their numerous functionalities on the surface and excellent electrical, thermal, and optical features. Altering the dimensions, structure, surface chemistry, and chemical composition of MXenes can enhance their energy conversion and storage capabilities. Therefore, it is crucial to understand the relationship between structure and property from an applied perspective. This study reviews the synthesis, properties, and potential applications of MXenes and discusses their structural, chemical, optical, mechanical, and thermal properties, as well as their applications in photocatalysis, gas sensing, supercapacitors, electrocatalysis, and environmental remediation. It also highlights the progress and future prospects of MXene-based composites, providing valuable insights for scientists in academia and material sciences.

CHEMISTRYSELECT (2023)

Article Chemistry, Physical

Barrier Strategy for Strain-Free Encapsulation of Perovskite Solar Cells

Yilin Zhang, Xin Liu, Xiaoran Sun, Yuelong Huang, Jian Yu, Tian Hou, Lei Shi, Martin A. Green, Xiaojing Hao, Meng Zhang

Summary: This study reveals that the performance loss caused by encapsulation in perovskite solar cells (PSCs) is related to the tensile strains on the functional layers. A barrier strategy using a nonadhesive barrier layer effectively reduces the performance loss and improves the stability of the device.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2023)

No Data Available