4.8 Article

Advances in Capacitive, Eddy Current, and Magnetic Displacement Sensors and Corresponding Interfaces

Journal

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume 64, Issue 12, Pages 9595-9607

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2017.2726982

Keywords

Capacitive sensors; displacement; eddy current sensors; magnetic sensors

Ask authors/readers for more resources

This paper presents a review of the latest advances in the field of capacitive, inductive (eddy current), and magnetic sensors, for measurement of absolute displacement. The need for accurate displacement and position measurement in the micrometer, nanometer, and subnanometer scales has increased significantly over the last few years. Application examples can be found in high-tech industries, metrology, and space equipment. Besides measuring displacement as a primary quantity, absolute displacement sensors are also used when physical quantities such as pressure, acceleration, vibration, inertia, etc., have to be measured. A better understanding of the commonalities between capacitive, inductive, and magnetic displacement sensors, as well as the main performance differences and limitations, will help one make the best choice for a specific application. This review is based on both theoretical analysis and experimental results. The main performance criteria used are: sensitivity, resolution, compactness, long-term stability, thermal drift, and power efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available