4.6 Article

Distributed resource scheduling in smart grid with electric vehicle deployment using fireworks algorithm

Journal

Publisher

SPRINGEROPEN
DOI: 10.1007/s40565-016-0195-6

Keywords

Unit commitment problem (UCP); Binary fireworks algorithm (BFWA); Constrained optimization; Renewable energy technologies (RETs); Plug-in electric vehicle (PEV)

Ask authors/readers for more resources

Global warming and climate change are two key probing issues in the present context. The electricity sector and transportation sector are two principle entities propelling both these issues. Emissions from these two sectors can be offset by switching to greener ways of transportation through the electric vehicle (EV) and renewable energy technologies (RET). Thus, effective scheduling of both resources holds the key to sustainable practice. This paper presents a scheduling scenario-based approach in the smart grid. Problem formulation with dual objective function including both emissions and cost is developed for conventional unit commitment with EV and RET deployment. In this work, the scheduling and commitment problem is solved using the fireworks algorithm which mimics explosion of fireworks in the sky to define search space and the distance between associated sparks to evaluate global minimum. Further, binary coded fireworks algorithm is developed for the proposed scheduling problem in the smart grid. Thereafter, possible scenarios in conventional as well as smart grid are put forward. Following that, the proposed methodology is simulated using a test system with thermal generators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available