4.7 Article Proceedings Paper

Cold spray deposition of a Ni-WC composite coating and its dry sliding wear behavior

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 308, Issue -, Pages 424-434

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2016.09.089

Keywords

Cold spray; Metal matrix composite; Friction; Mechanically mixed layer (MML); WC; Subsurface microstructure

Ask authors/readers for more resources

Ni-WC composite are ideal protective coatings against wear that are often fabricated using laser cladding. However, high temperature of laser cladding and associated materials melting may result in non-homogenous distribution of WC particles, as well as decarburization and considerable residual stress and a deterioration of the wear resistance. An alternative is to use cold spray to deposit WC based composite coatings. The lower temperature allows one to retain the composition of initial WC feedstock but the cold spray process is only recently being researched for development of composite coatings. In this study, Ni and Ni-WC coatings were fabricated by cold spray. The WC and Ni powders were fed to a de Laval nozzle from separate hoppers with independent feed rates. By adjusting feedrates, a blend of Ni-362 vol% WC was sprayed, which resulted in a composite coating of Ni-10.5 vol.% WC. The influence of WC on Ni deposition was examined via microstructural characterization, including morphology of the coating's top surface and polished cross sections. Mechanical properties of coatings were improved by incorporation of WC into the Ni matrix. The wear behavior of coatings was studied with reciprocating sliding wear tests using a 6.35 mm diameter WC-Co ball. All tests were conducted in dry air with a sliding speed of 3 minis, a track length of 10 mm, and normal load of 5N. WC-Ni coatings were more wear resistant than cold-sprayed Ni coatings. The correlations between worn surface morphologies, subsurface microstructure induced by wear and the wear behavior of the coatings was discussed. Microstructural analyses showed a mechanically mixed layer (MML) on the top of worn surfaces consisting of compacted oxides. It was revealed that the presence of hard particles in the Ni-WC coating facilitated fast development of the MML, as well as stabilized the MML, characterized by less plastic flow, fewer cracking and higher hardness. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available