4.8 Article

Structure and Magnetic Property Control of Copper Hydroxide Acetate by Non-Classical Crystallization

Journal

SMALL
Volume 13, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201602702

Keywords

-

Funding

  1. Max-Planck-Society

Ask authors/readers for more resources

Copper hydroxide acetate (CHA), one layered hydroxide compound with tunable magnetism, attracts great interest because of its potential applications in memory devices. However, ferromagnetism for CHA is only demonstrated by means of GPa pressure. Herein, a new method is reported, involving the combination of different crystallization pathways to control crystallization of amorphous CHA toward the formation of CHA/polymer composites with tunable magnetic properties and even a tunability that can be tested at room temperature. By using poly[( ethylene glycol) 6 methyl ether methacrylate]-block-poly[2-(acetoacetoxy) ethyl methacrylate] (PEGMA-b-PAEMA) diblock copolymers as additives in combination with a posttreatment process by ultracentrifugation, it is demonstrated that CHA and PEGMAb-PAEMA form composites exhibiting different magnetic properties, depending on CHA in-plane nanostructures. Analytical characterization reveals that crystallization of CHA is induced by ultracentrifugation, during which CHA nanostructures can be well controlled by changing the degrees of polymerization of the PEGMA and PAEMA blocks and their block length ratios. These findings not only present the first example of using crystallization from polymer stabilized amorphous precursors toward the generation of magnetic nanomaterials with tunable magnetism but also pave the way for the future design of functional composite materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available