4.5 Article

Efficient Neural Codes That Minimize Lp Reconstruction Error

Journal

NEURAL COMPUTATION
Volume 28, Issue 12, Pages 2656-2686

Publisher

MIT PRESS
DOI: 10.1162/NECO_a_00900

Keywords

-

Funding

  1. Office of Naval Research
  2. Air Force Office of Scientific Research

Ask authors/readers for more resources

The efficient coding hypothesis assumes that biological sensory systems use neural codes that are optimized to best possibly represent the stimuli that occur in their environment. Most common models use information-theoretic measures, whereas alternative formulations propose incorporating downstream decoding performance. Here we provide a systematic evaluation of different optimality criteria using a parametric formulation of the efficient coding problem based on threconstruction error of the maximum likelihood decoder. This parametric family includes both the information maximization criterion and squared decoding error as special cases. We analytically derived the optimal tuning curve of a single neuron encoding a one-dimensional stimulus with an arbitrary input distribution. We show how the result can be generalized to a class of neural populations by introducing the concept of a meta-tuning curve. The predictions of our framework are tested against previously measured characteristics of some early visual systems found in biology. We find solutions that correspond to low values of , suggesting that across different animal models, neural representations in the early visual pathways optimize similar criteria about natural stimuli that are relatively close to the information maximization criterion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available