4.6 Article

Sustainable composite super absorbents made from polysaccharides

Journal

MATERIALS LETTERS
Volume 183, Issue -, Pages 394-396

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matlet.2016.07.067

Keywords

Biomaterials; Sustainable super absorbent; Composite materials; Swelling; Mechanical strength

Funding

  1. National Natural Science Foundation of China [21506037]
  2. opening foundation of Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province [2016REWB11]
  3. Fuzhou University Qishan Scholar (Oversea project) [XRC-1508]

Ask authors/readers for more resources

Compared to traditional super absorbent polymers using raw materials from petrochemical industry, natural polymer absorbents are more favorable because they are sustainable and biodegradable. In this study, composite absorbents were developed by crosslinking carrageenan with sodium alginate using calcium chloride. Effect of composition on absorption was tested. Absorption was improved by increasing carrageenan content. The super absorbent exhibited the maximal swelling ratio of 13.1 g/g in 0.9% saline water in just 5 min. The maximal tensile strength was reached with a value of 12.8 MPa. Water contact angle revealed that carrageenan is more hydrophobic than sodium alginate. Presence of sulfate groups might be a key factor promoting absorption. The scanning electron microscopic images showed that the composite material had a structure with alginate arranged at the outside surface. These results demonstrate that a sustainable and biodegradable absorbent was successfully developed with a matrix of properties for potential application in diapers. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Surface reconstruction establishing Mott-Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction

Yao Kang, Shuo Wang, Kwan San Hui, Shuxing Wu, Duc Anh Dinh, Xi Fan, Feng Bin, Fuming Chen, Jianxin Geng, Weng-Chon Max Cheong, Kwun Nam Hui

Summary: This study presents a simple method to activate surface reconstruction on Ni(OH)(2) by incorporating F anions, leading to enhanced oxygen evolution reaction (OER) activity. Experimental results show that the incorporation of F ions facilitates surface reconstruction and the transformation of Ni(OH)(2) into a mesoporous and amorphous F-NiOOH layer.

NANO RESEARCH (2022)

Article Chemistry, Physical

In situ tailored strategy to remove capping agents from copper sulfide for building better lithium-sulfur batteries

Yuwei Zhao, Donghai Wu, Tingting Tang, Chongguang Lyu, Junfeng Li, Shunping Ji, Cheng-zong Yuan, Kwan San Hui, Chenyang Zha, Kwun Nam Hui, Houyang Chen

Summary: This article introduces an in situ tailored interface strategy for removing capping agents from the surface of copper sulfide and enhancing its catalytic activity. The method allows for the production of clean copper sulfide surfaces without the need for harsh processing conditions or non-commercial materials, leading to improved battery performance.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Review Materials Science, Multidisciplinary

Recent Development and Applications of Advanced Materials via Direct Ink Writing

Alpha Chi Him Tsang, Jintao Zhang, Kwun Nam Hui, Kwan San Hui, Haibao Huang

Summary: Direct ink writing (DIW) is a low-cost and environmentally-friendly method for rapid design and construction of scalable 3D structures, utilizing optimized rheological properties and a wide range of nanomaterials to enhance performance. It has potential applications in medical, energy storage, and environmental treatment fields.

ADVANCED MATERIALS TECHNOLOGIES (2022)

Review Materials Science, Multidisciplinary

Rechargeable Batteries: Regulating Electronic and Ionic Transports for High Electrochemical Performance

Xiaolong Xu, Xiuxiu Zhao, Kwan San Hui, Duc Anh Dinh, Kwun Nam Hui

Summary: This article summarizes the current progress of rechargeable batteries, introduces the principles of electrochemical reactions for different types of batteries, and analyzes the technological challenges in electron and ion transport. Approaches for regulating electronic and ionic transports to enhance electrochemical performance are discussed, as well as highlighting advanced energy storage materials with good conductivities. Several perspectives on potential research directions for high-performance rechargeable batteries for practical application are proposed.

ADVANCED MATERIALS TECHNOLOGIES (2022)

Article Chemistry, Physical

Zeolitic Imidazolate Framework-Derived Co-Fe@NC for Rechargeable Hybrid Sodium-Air Battery with a Low Voltage Gap and Long Cycle Life

Haixing Gao, Siqi Zhu, Yao Kang, Duc Anh Dinh, Kwan San Hui, Feng Bin, Xi Fan, Fuming Chen, Azhar Mahmood, Jianxin Geng, Weng-Chon Max Cheong, Kwun Nam Hui

Summary: In this study, efficient bimetallic nanoparticles encapsulated in nitrogen-doped carbon (Co-Fe@NC) were developed for the air electrode of high-performance rechargeable hybrid sodium-air batteries (HSABs). The bimetallic Co-Fe@NC catalyst showed higher activity and better performance in the oxygen reduction and evolution reactions compared to monometallic catalysts. The assembled HSAB with Co-Fe@NC in the air electrode demonstrated improved voltage gap, power density, and round-trip efficiency compared to the benchmark HSAB with Pt/C + RuO2.

ACS APPLIED ENERGY MATERIALS (2022)

Article Chemistry, Physical

Topological defect and sp3/sp2 carbon interface derived from ZIF-8 with linker vacancies for oxygen reduction reaction

Haixing Gao, Shuo Wang, Weng-Chon (Max) Cheong, Kaixi Wang, Huifang Xu, Aijian Huang, Junguo Ma, Jiazhan Li, Weng-Fai (Andy) Ip, Kwan San Hui, Duc Anh Dinh, Xi Fan, Feng Bin, Fuming Chen, Kwun Nam Hui

Summary: Ultrathin nitrogen-doped carbon nanosheets with intrinsic defects were synthesized through the pyrolysis of ZIF-8 with linker vacancies. The as-synthesized electrocatalyst exhibited excellent oxygen reduction reaction (ORR) activity and zinc-air battery performance. The adjacent sp3-carbon was found to enhance the adsorption and activation of oxygen molecules on sp2-carbon, leading to a lower ORR overpotential.

CARBON (2023)

Article Chemistry, Multidisciplinary

Dense Platinum/Nickel Oxide Heterointerfaces with Abundant Oxygen Vacancies Enable Ampere-Level Current Density Ultrastable Hydrogen Evolution in Alkaline

Kaixi Wang, Shuo Wang, Kwan San Hui, Junfeng Li, Chenyang Zha, Duc Anh Dinh, Zongping Shao, Bo Yan, Zikang Tang, Kwun Nam Hui

Summary: A 3D quasi-parallel structure consisting of dense Pt nanoparticles immobilized on oxygen vacancy-rich NiOx heterojunctions has been developed as an alkaline hydrogen evolution reaction (HER) catalyst. The catalyst exhibits extraordinary HER performance with a low overpotential, high mass activity, and long durability. When combined with NiFe-layered double hydroxide, the assembled alkaline electrolyzer requires extremely low voltage and can operate stably for a long time.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Physical

In Situ Immobilizing Atomically Dispersed Ru on Oxygen-Defective Co3O4 for Efficient Oxygen Evolution

Cheng-Zong Yuan, Shuo Wang, Kwan San Hui, Kaixi Wang, Junfeng Li, Haixing Gao, Chenyang Zha, Xiaomeng Zhang, Duc Anh Dinh, Xi-Lin Wu, Zikang Tang, Jiawei Wan, Zongping Shao, Kwun Nam Hui

Summary: The synergistic regulation of the electronic structures of transition-metal oxide-based catalysts via oxygen vacancy defects and single-atom doping is efficient to boost their oxygen evolution reaction (OER) performance. In this study, a facile defect-induced in situ single-atom deposition strategy is developed to anchor atomically dispersed Ru single-atom onto oxygen vacancy-rich cobalt oxides (Ru/Co3O4-x) based on the spontaneous redox reaction between Ru3+ ions and nonstoichiometric Co3O4-x. The as-prepared Ru/Co3O4-x electrocatalyst with the coexistence of oxygen vacancies and Ru atoms exhibits excellent performances toward OER.

ACS CATALYSIS (2023)

Article Chemistry, Physical

Enhanced electrochemical and environmental stability of black phosphorus-derived phosphorus composite anode for safe potassium-ion battery using amorphous zinc phosphate as a multi-functional additive

Shunping Ji, Yunshan Zheng, Kwan San Hui, Junfeng Li, Kaixi Wang, Chunyan Song, Huifang Xu, Shuo Wang, Chenyang Zha, Duc Anh Dinh, Zikang Tang, Zongping Shao, Kwun Nam Hui

Summary: By mixing amorphous zinc phosphate with black phosphorus nanomaterials, the agglomeration of black phosphorus can be weakened, and the volume expansion can be reduced, thus improving the stability of the composite electrode in humid air. The optimized amorphous black phosphorus/zinc phosphate composite anode retains a capacity of 369.0 mA h g-1 and reduces the volume expansion to 47% compared to the untreated electrode. Additionally, the amorphous zinc phosphate can absorb water, resulting in good environmental stability even after exposure to humid air for two days, with a reversible capacity of 629.2 mA h g-1.

ENERGY STORAGE MATERIALS (2023)

Article Chemistry, Multidisciplinary

Zinc-Doping Strategy on P2-Type Mn-Based Layered Oxide Cathode for High-Performance Potassium-ion Batteries

Yunshan Zheng, Junfeng Li, Shunping Ji, Kwan San Hui, Shuo Wang, Huifang Xu, Kaixi Wang, Duc Anh Dinh, Chenyang Zha, Zongping Shao, Kwun Nam Hui

Summary: In this study, a Zn-doped K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 material (denoted as KNMNO-Z) was reported to inhibit the Jahn-Teller effect and reduce the irreversible phase transition in potassium-ion batteries. Through the Zn-doping strategy, higher Mn valence was achieved, leading to an improvement in cyclic stability with a high retention rate of 97% after 1000 cycles.

SMALL (2023)

Article Chemistry, Multidisciplinary

Novel Synthesis of 3D Mesoporous FePO4 from Electroflocculation of Iron Filings as a Precursor of High-Performance LiFePO4/C Cathode for Lithium-Ion Batteries

Jiawu Peng, Xiaoting Hong, Qiongxiang Zhou, Kwan San Hui, Bin Chen

Summary: This study presents a method for synthesizing microspherical FePO4·2H2O precursors with secondary nanostructures by the electroflocculation of low-cost iron fillers in a hot solution. The effect of precursor structure and morphology on the electrochemical performance of the synthesized LiFePO4/C was investigated. The improved performance of LiFePO4/C was attributed to the enhanced Li+ diffusion rate and the crystallinity of LiFePO4/C.

ACS OMEGA (2023)

Article Chemistry, Multidisciplinary

Insights into Electrode Architectures and Lithium-Ion Transport in Polycrystalline V2O5 Cathodes of Solid-State Batteries

Zhenjiang Yu, Hongmei Shan, Yunlei Zhong, Guo Hong, Kwan San Hui, Xia Zhang, Kwun Nam Hui

Summary: This study presents a lithium-free V2O5 cathode for application in polymer-based solid-state batteries (SSBs) with high energy density. The microstructured transport channels and suitable operational voltage enable the utilization of polymer-based solid-state electrolyte (SSE). The V2O5 cathode, constructed through microstructural engineering, exhibits improved electrochemical performance and cycling stability in SSBs.

SMALL (2023)

Article Chemistry, Physical

Non-noble single-atom alloy for electrocatalytic nitrate reduction using hierarchical high-throughput screening

Shuo Wang, Lei Li, Kwan San Hui, Duc Anh Dinh, Zhiyi Lu, Qiuju Zhang, Kwun Nam Hui

Summary: Electrochemical nitrate reduction reaction (NO3RR) has potential in wastewater management and carbon-neutral ammonia synthesis, but lacks high-quality catalysts with controllable reaction pathways and high activity and selectivity. In this study, we explore the application of single atom alloys (SAAs) in nitrate reduction through high-throughput first-principles calculations. We identify Ni/Cu(111) as the most active SAA catalyst for NO3RR and find that the adsorption free energy of *NO3 can serve as an efficient descriptor to design and predict the NO3RR performance of SAAs. Furthermore, we reveal the pH-dependent properties of Cu-based SAAs, which influence the competition between the hydrogen evolution reaction (HER) and NO3RR.

NANO ENERGY (2023)

Article Chemistry, Physical

Enhanced K-storage performance in ultralong cycle-life potassium-ion batteries achieved via carbothermal-reduction-synthesized KVOPO4 cathode

Junfeng Li, Yunshan Zheng, Kwan San Hui, Kaixi Wang, Chenyang Zha, Duc Anh Dinh, Jiguo Tu, Zongping Shao, Kwun Nam Hui

Summary: A carbothermal reduction approach and stable electrode/electrolyte interface construction regulated by voltage are used to ensure the ultra-long cycling performance of potassium ion batteries (PIBs) with pure-phase KVOPO4 materials. The KVOPO4 materials demonstrate a stable 3D crystal framework and efficient K+ diffusion, leading to high reversibility and low-capacity decay upon cycling. The exceptional structure and robust electrode/electrolyte interface of KVOPO4 materials explain their cycling stability.

ENERGY STORAGE MATERIALS (2023)

Article Chemistry, Physical

In Situ Immobilizing Atomically Dispersed Ru on Oxygen-Defective for Efficient Evolution

Cheng-Zong Yuan, Shuo Wang, Kwan San Hui, Kaixi Wang, Junfeng Li, Haixing Gao, Chenyang Zha, Xiaomeng Zhang, Duc Anh Dinh, Xi-Lin Wu, Zikang Tang, Jiawei Wan, Zongping Shao, Kwun Nam Hui

Summary: The synergistic regulation of electronic structures of transition-metal oxide-based catalysts using oxygen vacancy defects and single atom doping can significantly enhance their performance in oxygen evolution reaction (OER). In this study, a simple defect-induced in situ single-atom deposition strategy was developed to deposit atomically dispersed Ru single atoms onto oxygen vacancy-rich cobalt oxides (Ru/Co3O4-x) by a spontaneous redox reaction. The resulting Ru/Co3O4-x electrocatalyst, with the coexistence of oxygen vacancies and Ru atoms, exhibited excellent OER performance with a low overpotential, small Tafel slope value, and good long-term stability in alkaline media. Density functional theory calculations revealed that the synergy between oxygen vacancies and atomically dispersed Ru can optimize the adsorption of oxygen-based intermediates and reduce the reaction barriers of OER by tailoring the electron decentralization and d-band center of Co atoms. This study proposes a feasible strategy for constructing electrocatalysts with abundant oxygen vacancies and atomically dispersed noble metals, and provides a deep understanding of the electronic engineering of transition-metal-based catalysts to boost OER.

ACS CATALYSIS (2023)

Article Materials Science, Multidisciplinary

F-doped Co3O4 with Pt-like activity and excellent stability for hydrogen evolution reaction in alkaline media

Deyong Zheng, Huihui Jin, Yucong Liao, Pengxia Ji

Summary: In this study, a highly stable and efficient catalyst, fluorine-doped Co3O4 (F-Co3O4), was developed for hydrogen production by water electrolysis. The F-Co3O4 catalyst exhibited a remarkable reduction in overpotential and demonstrated excellent stability for over 100 hours.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of the addition of Cu6Sn5 nanoparticles on the growth of intermetallic compounds at the interfaces of Sn3.0Ag0.5Cu solder joints

Ziwen Lv, Jintao Wang, Fengyi Wang, Jianqiang Wang, Fuquan Li, Hongtao Chen

Summary: Adding Cu6Sn5 nano particles can effectively inhibit the overgrowth of intermetallic compounds at the interfaces of solder joints in electronic devices, providing a solution to this issue. A new growth mechanism of intermetallic compounds at the interfaces was identified.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

BiOI/AgI/Ag plasmonic heterostructure for efficient photoelectrochemical water splitting

Jun Wang, Jiawei Chen, Wanru Liao, Fangyang Liu, Min Liu, Liangxing Jiang

Summary: A BiOI/AgI/Ag plasmonic heterostructure photocathode was successfully designed through electrodeposition, ion-exchange, and illumination methods. This photocathode exhibits superior performance in photoelectrochemical water splitting.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Ni@O-doped carbon Mott-Schottky heterojunctions to enhance sulfur conversion kinetics

Xiaoxiao Liu, Xianxian Zhou, Xiaotao Ma, Qinbo Yuan, Shibin Liu

Summary: In this study, the authors propose a method to accelerate the reaction of polysulfides in lithium-sulfur batteries using a Ni@OC Mott-Schottky heterojunction as a catalyst. The experimental results demonstrate that the charge redistribution at the Ni@OC interface accelerates electron transfer and enhances catalytic activity, leading to improved reaction kinetics and battery performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of fixture boundary conditions for low-velocity impact: A focus on composites with different matrix and fibers

Dayou Ma, Mohammad Rezasefat, Joziel Aparecido da Cruz, Sandro Campos Amico, Marco Giglio, Andrea Manes

Summary: The matrix has a significant effect on the impact resistance of composite materials. Replacing a brittle polymer with a more flexible one can improve impact resistance, but it poses challenges to standard testing methods. This study designs a new fixture for testing the low-velocity impact of soft composites and investigates the effect of the fixture on the mechanical performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Synergistic effect of defects and heterostructures endowing bronze titanium dioxide with superior lithium storage performances

Lingchang Wang, Qihang Yang, Huzhen Li, Ming Wei, Qian Wang, Zhenzhong Hu, Mengmeng Zhen

Summary: Bronze titanium dioxide (TiO2(B)) is a promising anode material for lithium-ion batteries due to its high specific capacity. However, its practical applications are hindered by poor conductivity and limited electrochemical kinetics. In this study, TiO2(B)-carbon nanosheets heterostructures are synthesized to enhance the cycling performance and rate capability of TiO2(B).

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Sustained electromagnetic parameters of barium ferrite and epoxy nanocomposites for patch antenna miniaturization over GHz frequency range

Atul Thakur, Ritesh Verma, Ankush Chauhan, Fayu Wan, Preeti Thakur

Summary: In this study, BaFe12O19 and BaFe12O19: Epoxy (50:50) nanocomposites were synthesized using the co-precipitation method. The structural information and material properties, such as crystallite size and electrical conductivity, were characterized by XRD, FESEM, EDX, and TEM techniques.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

In-situ construction of CoS2@NC hierarchical binder-free cathode for advanced Li-CO2 batteries

Jingyu Wu, Xinyan Ma, Yong Yang

Summary: A well-defined CoS2@NC(CS-500) hierarchical binder-free catalyst cathode is constructed through in-situ grown of ZIF-67 on carbon cloth and high-temperature carbonization. The cathode shows excellent reaction kinetics and electrochemical performance, providing inspiration for developing advanced Li-CO2 battery catalysts.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

K5Eu1-xHox(MoO4)4: Structures and luminescence properties

Svetlana M. Posokhova, Vladimir A. Morozov, Kirill N. Boldyrev, Dina Deyneko, Erzhena T. Pavlova, Bogdan I. Lazoryak

Summary: This study explores the impact of synthesis method and composition on the structure and luminescence properties of K5Eu1-xHox(MoO4)4 with the palmierite-type matrix. The co-doping of Eu3+ and Ho3+ ions plays a critical role in manipulating charge transfer and luminescence efficiency in the visible and infrared regions.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Benzonitrile/pyridylbenzoimidazole hybrid electron-transport material for efficient phosphorescence and TADF OLEDs

Jian Wang, Yeting Tao, Jingsheng Wang, Youtian Tao

Summary: A new electron-transport material iTPyBI-CN is developed through non-catalytic C-N coupling reaction. It exhibits better electroluminescence efficiency in organic light-emitting diodes compared to the commercial material TPBI, due to its twisted geometry and higher energy levels.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Microscopic characteristics and thermodynamic property changes in limestone under high-temperature treatment

Tao Zhu, Feng Huang, Shuo Li, Yang Zhou

Summary: This article combines XRD analysis and microscopic structural observation to investigate the changes in limestone after high-temperature treatment. It finds that 500 degrees C is the critical temperature for crystalline and spatial arrangement changes in limestone, and the thermal conductivity, specific heat capacity, and heat storage coefficient gradually decrease after thermal treatment.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Novel synthesis of ZnO nanostructure from galvanization waste for antibacterial application

Muhammad Haekal Habibie, Fransiska Sri Herwahyu Krismastuti, Abdi Wira Septama, Faiza Maryani, Vivi Fauzia

Summary: This study focuses on the synthesis of zinc oxide nanostructure from zinc recovered from galvanization ash and highlights its potential as a sustainable source of zinc and as an antibacterial agent.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Biomimetic mineralization engineered phycocyanin with improved stability and antioxidantive activity under environmental stress

Jingyi Li, Yixin Xing, Wei Gu, Shousi Lu

Summary: In this study, PC@CaP microparticles were fabricated using biomimetic mineralization. The results showed that under environmental stress, PC@CaP exhibited improved stability and antioxidative activity, indicating its potential use in high-added value fields.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

ZIF-8 nanoparticles combined with fibroin protein co-modified TiO2 nanotube arrays to construct a drug sustained-release platform

Yan Liu, Shunyou Chen

Summary: In this study, TNTs were used as a drug carrier and modified with ZIF-8 and silk fibroin to obtain a new drug loading platform. The results showed that this drug-loaded platform had a good drug release effect in vitro and could promote cell proliferation and osteogenic differentiation.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Observation of stacking faults in ε-phase InSe crystal

Chunhui Zhu, Wentao Wang, Qing Zhen, Xinning Huang, Shixin Li, Shaochang Wang, Xiaoping Ma, Xiaoxia Liu, Yalong Jiao, Kai Sun, Zhuangzhi Li, Huaixin Yang, Jianqi Li

Summary: A type of stacking fault is revealed in e-InSe crystal, which is associated with a small stacking-fault energy and shows exceptional plasticity.

MATERIALS LETTERS (2024)