4.6 Article

Performance Enhancement of an MoS2-Based Heterojunction Solar Cell with an In2Te3 Back Surface Field: A Numerical Simulation Approach

Journal

ACS OMEGA
Volume 8, Issue 7, Pages 7017-7029

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c07846

Keywords

-

Ask authors/readers for more resources

Researchers are interested in MoS2-based solar cells due to their semiconducting characteristics. This study aims to improve the performance of the proposed Al/ITO/TiO2/MoS2/In2Te3/Ni solar cell and analyze the effects of In2Te3 and TiO2 on various performance parameters. SCAPS simulation software is used to analyze factors such as thickness, carrier concentration, and interface defects. The proposed solar cell with In2Te3 shows higher PCE, VOC, JSC, and FF values compared to the reference cell without In2Te3. This research provides insights for developing cost-effective MoS2-based thin-film solar cells.
Researchers are currently showing interest in molybdenum disulfide (MoS2)-based solar cells due to their remarkable semiconducting characteristics. The incompatibility of the band structures at the BSF/absorber and absorber/buffer interfaces, as well as carrier recombination at the rear and front metal contacts, prevents the expected result from being achieved. The main purpose of this work is to enhance the performance of the newly proposed Al/ITO/TiO2/MoS2/In2Te3/Ni solar cell and investigate the impacts of the In2Te3 BSF and TiO2 buffer layer on the performance parameters of open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), and power conversion efficiency (PCE). This research has been performed by utilizing SCAPS simulation software. The performance parameters such as variation of thickness, carrier concentration, the bulk defect concentration of each layer, interface defect, operating temperature, capacitance-voltage (C-V), surface recombination velocity, and front as well as rear electrodes have been analyzed to achieve a better performance. This device performs exceptionally well at lower carrier concentrations (1 x 1016 cm-3) in a thin (800 nm) MoS2 absorber layer. The PCE, VOC, JSC, and FF values of the Al/ITO/TiO2/ MoS2/Ni reference cell have been estimated to be 22.30%, 0.793 V, 30.89 mA/cm2, and 80.62% respectively, while the PCE, VOC, JSC, and FF values have been determined to be 33.32%, 1.084 V, 37.22 mA/cm2, and 82.58% for the Al/ITO/TiO2/MoS2/In2Te3/Ni proposed solar cell by introducing In2Te3 between the absorber (MoS2) and the rear electrode (Ni). The proposed research may give an insight and a feasible way to realize a cost-effective MoS2-based thin-film solar cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available