4.6 Article

Temperature Dependence of the Surface and Volume Hydrophilicity of Hydrophilic Polymer Brushes

Journal

LANGMUIR
Volume 32, Issue 14, Pages 3433-3444

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.6b00448

Keywords

-

Funding

  1. Chinese Scholarship Council (CSC)
  2. F.R.S.-FNRS
  3. Belgian Federal Science Policy [IAP/PAI P7/05]

Ask authors/readers for more resources

The temperature-dependence of the volume and surface hydrophilicity of a series of water-swollen dense polymer brushes is measured by contact angle measurements in the captive bubble configuration, by ellipsometry, and by quartz crystal microbalance with dissipation monitoring (QCM-D). Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and poly(di(methoxyethoxy)ethyl methacrylate) (PMEO(2)MA), strongly hydrophilic poly(N,N-dimethylacrylamide) (PDMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA), and weakly hydrophilic poly(-hydroxyethyl methacrylate) (PHEMA) brushes were synthesized by surface-initiated atom-transfer radical polymerization (SI-ATRP). Conditions leading to reproducible measurements of the contact angle are first provided, giving access to the surface hydrophilicity. Volume hydrophilicity is quantified by measuring the swelling of the brushes, either by QCM-D or by ellipsometry. A model-free methodology is proposed to analyze the QCM-D data. Comparison between the acoustic and optical swelling coefficients shows that QCM-D is sensitive to the maximal thickness of swollen brushes, while ellipsometry provides an integral thickness. Diagrams of surface versus volume hydrophilicity of the brushes finally lead to identify two types of behavior: strongly water-swollen brushes exhibit a progressive decrease of volume hydrophilicity with temperature, while surface hydrophilicity changes moderately; weakly water-swollen brushes have a close-to-constant volume hydrophilicity, while surface hydrophilicity decreases with temperature. Thermoresponsive brushes abruptly switch from one behavior to the other, and do not exhibit an abrupt change of surface hydrophilicity across their collapse transition contrarily to a common erroneous belief. In general, there is no direct correlation between surface and volume hydrophilicity, because surface properties are dependent on the details of conformation and composition at the surface, whereas volume properties are averaged over a finite region within the brush.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available