4.8 Article

Non-Abelian braiding of graph vertices in a superconducting processor

Journal

NATURE
Volume 618, Issue 7964, Pages 264-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-023-05954-4

Keywords

-

Ask authors/readers for more resources

Indistinguishability of particles is a fundamental principle in quantum mechanics. While braiding of Abelian anyons leaves the system unchanged, braiding of non-Abelian anyons can change the observables of the system without violating the principle of indistinguishability. Experimental observation of non-Abelian anyons' exchange statistics has remained elusive, but using quantum processors, it is now possible to manipulate and braid them, allowing for the verification of their fusion rules and statistics. This work provides insights into non-Abelian braiding and its potential application in fault-tolerant quantum computing with the inclusion of error correction.
Indistinguishability of particles is a fundamental principle of quantum mechanics(1). For all elementary and quasiparticles observed to date-including fermions, bosons and Abelian anyons-this principle guarantees that the braiding of identical particles leaves the system unchanged(2,3). However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions(4-8). Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals(9-22), the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons(9,10), we implement a generalized stabilizer code and unitary protocol(23) to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Applied

Readout of a quantum processor with high dynamic range Josephson parametric amplifiers

Theodore White, Alex Opremcak, George Sterling, Alexander Korotkov, Daniel Sank, Rajeev Acharya, Markus Ansmann, Frank Arute, Kunal Arya, Joseph C. Bardin, Andreas Bengtsson, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Zijun Chen, Ben Chiaro, Josh Cogan, Roberto Collins, Alexander L. Crook, Ben Curtin, Sean Demura, Andrew Dunsworth, Catherine Erickson, Reza Fatemi, Leslie Flores Burgos, Ebrahim Forati, Brooks Foxen, William Giang, Marissa Giustina, Alejandro Grajales Dau, Michael C. Hamilton, Sean D. Harrington, Jeremy Hilton, Markus Hoffmann, Sabrina Hong, Trent Huang, Ashley Huff, Justin Iveland, Evan Jeffrey, Maria Kieferova, Seon Kim, Paul V. Klimov, Fedor Kostritsa, John Mark Kreikebaum, David Landhuis, Pavel Laptev, Lily Laws, Kenny Lee, Brian J. Lester, Alexander Lill, Wayne Liu, Aditya Locharla, Erik Lucero, Trevor McCourt, Matt McEwen, Xiao Mi, Kevin C. Miao, Shirin Montazeri, Alexis Morvan, Matthew Neeley, Charles Neill, Ani Nersisyan, Jiun How Ng, Anthony Nguyen, Murray Nguyen, Rebecca Potter, Chris Quintana, Pedram Roushan, Kannan Sankaragomathi, Kevin J. Satzinger, Christopher Schuster, Michael J. Shearn, Aaron Shorter, Vladimir Shvarts, Jindra Skruzny, W. Clarke Smith, Marco Szalay, Alfredo Torres, Bryan W. K. Woo, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Ningfeng Zhu, Nicholas Zobrist, Yu Chen, Anthony Megrant, Julian Kelly, Ofer Naaman

Summary: We present a high dynamic range Josephson parametric amplifier (JPA) that utilizes an array of rf-SQUIDs as the active nonlinear element. The amplifier is matched to the 50-ohm environment and achieves a bandwidth of 250-300 MHz with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor is utilized for benchmarking these devices, providing calibration for readout power, estimation of amplifier added noise, and comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. The results demonstrate that the high power rf-SQUID array design has no adverse effects on system noise, readout fidelity, or qubit dephasing, with an estimated upper bound of amplifier added noise at 1.6 times the quantum limit. Additionally, this design shows no degradation in readout fidelity due to gain compression that can occur in multi-tone multiplexed readout with traditional JPAs.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Multidisciplinary

Graph gauge theory of mobile non-Abelian anyons in a qubit stabilizer code

Yuri D. Lensky, Kostyantyn Kechedzhi, Igor Aleiner, Eun-Ah Kim

Summary: Stabilizer codes allow for non-local encoding and processing of quantum information. Deformations of stabilizer surface codes introduce new and non-trivial geometry, leading to emergence of long sought after objects known as projective Ising non-Abelian anyons. We present a simple and systematic approach to construct effective unitary protocols for braiding, manipulation and readout of non-Abelian anyons.

ANNALS OF PHYSICS (2023)

Article Chemistry, Multidisciplinary

Domain-Dependent Surface Adhesion in Twisted Few-Layer Graphene: Platform for Moire-Assisted Chemistry

Valerie Hsieh, Dorri Halbertal, Nathan R. . Finney, Ziyan Zhu, Eli Gerber, Michele Pizzochero, Emine Kucukbenli, Gabriel R. Schleder, Mattia Angeli, Kenji Watanabe, Takashi Taniguchi, Eun-Ah Kim, Efthimios Kaxiras, James Hone, Cory R. Dean, D. N. Basov

Summary: Twisted van der Waals multilayers are regarded as a rich platform for accessing novel electronic phases. This study proposes that naturally formed stacking domains due to relative twist between layers can act as an additional control knob. The researchers observe selective adhesion of metallic nanoparticles and liquid water at domains with specific stacking configurations and demonstrate the manipulation of nanoparticles can locally reconfigure the moire superlattice.

NANO LETTERS (2023)

Article Multidisciplinary Sciences

Suppressing quantum errors by scaling a surface code logical qubit

Rajeev Acharya, Igor Aleiner, Richard Allen, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Sergio Boixo, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander L. Crook, Ben Curtin, Dripto M. Debroy, Alexander Del Toro Barba, Sean Demura, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Lara Faoro, Edward Farhi, Reza Fatemi, Leslie Flores Burgos, Ebrahim Forati, Austin G. Fowler, Brooks Foxen, William Giang, Craig Gidney, Dar Gilboa, Marissa Giustina, Alejandro Grajales Dau, Jonathan A. Gross, Steve Habegger, Michael C. Hamilton, Matthew P. Harrigan, Sean D. Harrington, Oscar Higgott, Jeremy Hilton, Markus Hoffmann, Sabrina Hong, Trent Huang, Ashley Huff, William J. Huggins, Lev B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Pavol Juhas, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Tanuj Khattar, Mostafa Khezri, Maria Kieferova, Seon Kim, Alexei Kitaev, Paul V. Klimov, Andrey R. Klots, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, David Landhuis, Pavel Laptev, Kim-Ming Lau, Lily Laws, Joonho Lee, Kenny Lee, Brian J. Lester, Alexander Lill, Wayne Liu, Aditya Locharla, Erik Lucero, Fionn D. Malone, Jeffrey Marshall, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Anthony Megrant, Bernardo Meurer Costa, Xiao Mi, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Alexis Morvan, Emily Mount, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Ani Nersisyan, Hartmut Neven, Michael Newman, Jiun How Ng, Anthony Nguyen, Murray Nguyen, Murphy Yuezhen Niu, Thomas E. O'Brien, Alex Opremcak, John Platt, Andre Petukhov, Rebecca Potter, Leonid P. Pryadko, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Negar Saei, Daniel Sank, Kannan Sankaragomathi, Kevin J. Satzinger, Henry F. Schurkus, Christopher Schuster, Michael J. Shearn, Aaron Shorter, Vladimir Shvarts, Jindra Skruzny, Vadim Smelyanskiy, W. Clarke Smith, George Sterling, Doug Strain, Marco Szalay, Alfredo Torres, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Theodore White, Cheng Xing, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu

Summary: Quantum error correction, achieved by encoding logical qubits within many physical qubits, can reduce errors and improve the performance of quantum computing. Researchers have demonstrated that their system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. This experimental demonstration paves the way for reaching the logical error rates required for practical quantum computation.

NATURE (2023)

Article Nanoscience & Nanotechnology

Single-photon detection using high-temperature superconductors

I. Charaev, D. A. Bandurin, A. T. Bollinger, I. Y. Phinney, I. Drozdov, M. Colangelo, B. A. Butters, T. Taniguchi, K. Watanabe, X. He, O. Medeiros, I. Bozovic, P. Jarillo-Herrero, K. K. Berggren

Summary: High-temperature cuprate superconducting nanowires enable single-photon detection at higher temperatures, offering high detection efficiency, signal-to-noise ratio, and fast recovery times. This is crucial for applications such as quantum communication, fluorescence lifetime imaging, and remote sensing. Our research expands the materials family for SNSPD technology, allowing for single-photon detection at common temperatures without the need for costly cooling equipment.

NATURE NANOTECHNOLOGY (2023)

Correction Multidisciplinary Sciences

Melting of generalized Wigner crystals in transition metal dichalcogenide heterobilayer Moire systems (vol 13, 7098, 2022)

Michael Matty, Eun-Ah Kim

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Structural evolution of the kagome superconductors AV3Sb5 (A = K, Rb, and Cs) through charge density wave order

Linus Kautzsch, Brenden R. Ortiz, Krishnanand Mallayya, Jayden Plumb, Ganesh Pokharel, Jacob P. C. Ruff, Zahirul Islam, Eun-Ah Kim, Ram Seshadri, Stephen D. Wilson

Summary: The structural ground states and temperature-dependent evolution of the kagome superconductors KV3Sb5, RbV3Sb5, and CsV3Sb5 have been investigated. KV3Sb5 and RbV3Sb5 exhibit 2 x 2 x 2 superstructures with staggered trihexagonal deformation of vanadium layers in the Fmmm space group. CsV3Sb5 displays more complex structural evolution, with a staged progression of ordering into a 2 x 2 x 4 supercell exhibiting trihexagonal and Star of David patterns of deformations. Diffraction under pulsed magnetic fields suggests that the CDW state of CsV3Sb5 is insensitive to external magnetic fields.

PHYSICAL REVIEW MATERIALS (2023)

Article Engineering, Electrical & Electronic

Design and Characterization of a <4-mW/Qubit 28-nm Cryo-CMOS Integrated Circuit for Full Control of a Superconducting Quantum Processor Unit Cell

Juhwan Yoo, Zijun Chen, Frank Arute, Shirin Montazeri, Marco Szalay, Catherine Erickson, Evan Jeffrey, Reza Fatemi, Marissa Giustina, Markus Ansmann, Erik Lucero, Julian Kelly, Joseph C. Bardin

Summary: Researchers present a cryogenic quantum control integrated circuit (IC) capable of controlling a two-qubit subcircuit of a superconducting quantum processor. The IC achieves a low error rate while meeting the requirements of a universal gateset for quantum computing, all while consuming low power.

IEEE JOURNAL OF SOLID-STATE CIRCUITS (2023)

Article Materials Science, Multidisciplinary

Frustrated charge order and cooperative distortions in ScV6Sn6

Ganesh Pokharel, Brenden R. Ortiz, Linus Kautzsch, S. J. Gomez Alvarado, Krishnanand Mallayya, Guang Wu, Eun-Ah Kim, Jacob P. C. Ruff, Suchismita Sarker, Stephen D. Wilson

Summary: In this study, the stability of charge order in the kagome metal ScV6Sn6 is investigated. Short-range and long-range charge correlations at different wave vectors are observed, which are both quenched upon the introduction of larger Y ions. The results validate the theoretical prediction of the primary lattice instability and provide insights into the frustration of charge order in this compound.

PHYSICAL REVIEW MATERIALS (2023)

Article Physics, Multidisciplinary

Machine learning discovery of new phases in programmable quantum simulator snapshots

Cole Miles, Rhine Samajdar, Sepehr Ebadi, Tout T. Wang, Hannes Pichler, Subir Sachdev, Mikhail D. Lukin, Markus Greiner, Kilian Q. Weinberger, Eun-Ah Kim

Summary: Machine learning is a promising approach for studying complex phenomena with rich datasets. This study introduces a hybrid-correlation convolutional neural network (hybrid-CCNN) and applies it to experimental data generated by a programmable quantum simulator. The hybrid-CCNN is able to discover and identify new quantum phases on square lattices with programmable interactions. This combination of programmable quantum simulators with machine learning provides a powerful tool for exploring correlated quantum states of matter.

PHYSICAL REVIEW RESEARCH (2023)

No Data Available