4.8 Article

Quantum walks on a programmable two-dimensional 62-qubit superconducting processor

Journal

SCIENCE
Volume 372, Issue 6545, Pages 948-+

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.abg7812

Keywords

-

Funding

  1. National Key R&D Program of China [2017YFA0304300]
  2. Chinese Academy of Sciences
  3. Technology Committee of Shanghai Municipality
  4. National Science Foundation of China [11905217, 11774326]
  5. Shanghai Municipal Science and Technology Major Project [2019SHZDZX01]
  6. Natural Science Foundation of Shanghai [19ZR1462700]
  7. Key-Area Research and Development Program of Guangdong Provice [2020B0303030001]
  8. Japanese MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) [JPMXS0118069605]
  9. Anhui Initiative in Quantum Information Technologies

Ask authors/readers for more resources

The study designed and fabricated a high-fidelity two-dimensional superconducting qubit array, demonstrating single- and double-particle quantum walks, realizing a Mach-Zehnder interferometer, and observing interference fringes. This work represents a milestone in bringing larger-scale quantum applications closer to realization on noisy intermediate-scale quantum processors.
Quantum walks are the quantum mechanical analog of classical random walks and an extremely powerful tool in quantum simulations, quantum search algorithms, and even for universal quantum computing. In our work, we have designed and fabricated an 8-by-8 two-dimensional square superconducting qubit array composed of 62 functional qubits. We used this device to demonstrate high-fidelity single- and two-particle quantum walks. Furthermore, with the high programmability of the quantum processor, we implemented a Mach-Zehnder interferometer where the quantum walker coherently traverses in two paths before interfering and exiting. By tuning the disorders on the evolution paths, we observed interference fringes with single and double walkers. Our work is a milestone in the field, bringing future larger-scale quantum applications closer to realization for noisy intermediate-scale quantum processors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Optics

High-rate quantum key distribution exceeding 110 Mb s-1

Wei Li, Likang Zhang, Hao Tan, Yichen Lu, Sheng-Kai Liao, Jia Huang, Hao Li, Zhen Wang, Hao-Kun Mao, Bingze Yan, Qiong Li, Yang Liu, Qiang Zhang, Cheng-Zhi Peng, Lixing You, Feihu Xu, Jian-Wei Pan

Summary: This article reports a QKD system that can generate keys at a record high rate of 115.8 Mb/s over a 10 km standard optical fiber and distribute keys over up to 328 km of ultralow-loss fiber. These abilities are attributed to a multipixel superconducting nanowire single-photon detector with an ultrahigh counting rate, an integrated transmitter that can stably encode polarization states with low error, a fast post-processing algorithm for generating keys in real time, and the high system clock rate operation. The results demonstrate the feasibility of practical high-rate QKD with photonic techniques, thus opening its possibility for widespread applications.

NATURE PHOTONICS (2023)

Article Physics, Multidisciplinary

Twin-Field Quantum Key Distribution without Phase Locking

Wei Li, Likang Zhang, Yichen Lu, Zheng-Ping Li, Cong Jiang, Yang Liu, Jia Huang, Hao Li, Zhen Wang, Xiang-Bin Wang, Qiang Zhang, Lixing You, Feihu Xu, Jian-Wei Pan

Summary: We propose and demonstrate a new method to achieve twin-field quantum key distribution (TF-QKD) without the need for phase locking. By separating the communication time into reference frames and quantum frames, we establish a global phase reference using the reference frames and reconcile the phase reference efficiently using a tailored algorithm based on fast Fourier transform. We successfully demonstrate no-phase-locking TF-QKD from short to long distances over standard optical fibers, achieving high secret key rates and repeaterlike key rates. Our work provides a scalable and practical solution to TF-QKD, representing an important step towards its wide applications.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Unconditional and Robust Quantum Metrological Advantage beyond N00N States

Jian Qin, Yu-Hao Deng, Han-Sen Zhong, Li-Chao Peng, Hao Su, Yi-Han Luo, Jia-Min Xu, Dian Wu, Si-Qiu Gong, Hua-Liang Liu, Hui Wang, Ming-Cheng Chen, Li Li, Nai-Le Liu, Chao-Yang Lu, Jian-Wei Pan

Summary: Quantum metrology aims to enhance measurement sensitivity by utilizing quantum resources. We propose and realize a novel quantum metrology scheme that combines unconventional nonlinear interferometers and stimulated emission of squeezed light. Our method achieves a scalable, unconditional, and robust quantum metrological advantage, outperforming ideal 5-N00N states. The demonstrated enhancement in Fisher information per photon, without discounting for imperfections or photon loss, makes our approach applicable in practical quantum metrology at low photon flux regime.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Experimental Full Network Nonlocality with Independent Sources and Strict Locality Constraints

Xue-Mei Gu, Liang Huang, Alejandro Pozas-Kerstjens, Yang-Fan Jiang, Dian Wu, Bing Bai, Qi-Chao Sun, Ming-Cheng Chen, Jun Zhang, Sixia Yu, Qiang Zhang, Chao-Yang Lu, Jian-Wei Pan

Summary: Nonlocality in networks composed of independent sources exhibits different phenomena compared to standard Bell scenarios. Network nonlocality in the entanglement-swapping scenario has been extensively studied, but previous violations of bilocality inequality could not certify the nonclassicality of their sources. We experimentally observe full network nonlocal correlations in a network where the loopholes of source-independence, locality, and measurement-independence are closed. Our experiment violates known inequalities for nonfull network nonlocal correlations by over 5 standard deviations, confirming the absence of classical sources.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Full-Period Quantum Phase Estimation

Li-Zheng Liu, Yue-Yang Fei, Yingqiu Mao, Yi Hu, Rui Zhang, Xu-Fei Yin, Xiao Jiang, Li Li, Nai-Le Liu, Feihu Xu, Yu-Ao Chen, Jian-Wei Pan

Summary: In this study, a full-period quantum phase estimation approach is proposed and demonstrated. The approach adopts Kitaev's phase estimation algorithm to eliminate phase ambiguity and uses GHZ states to obtain phase values. Through an eight-photon experiment, the estimation of unknown phases in a full period is achieved, and the phase super-resolution and sensitivity beyond the shot-noise limit are observed. This research provides a new way for quantum sensing and represents a solid step towards its general applications.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits

Chong Ying, Bin Cheng, Youwei Zhao, He-Liang Huang, Yu-Ning Zhang, Ming Gong, Yulin Wu, Shiyu Wang, Futian Liang, Jin Lin, Yu Xu, Hui Deng, Hao Rong, Cheng-Zhi Peng, Man -Hong Yung, Xiaobo Zhu, Jian-Wei Pan

Summary: Although NISQ quantum computing devices are still limited in terms of qubit quantity and quality, quantum computational advantage has been experimentally demonstrated. Hybrid quantum and classical computing architectures have become the main paradigm for exhibiting NISQ applications, with the use of low-depth quantum circuits. This study demonstrates a circuit-cutting method for simulating quantum circuits with multiple logical qubits using only a few physical superconducting qubits, showcasing higher fidelity and scalability.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Solving Graph Problems Using Gaussian Boson Sampling

Yu-Hao Deng, Si-Qiu Gong, Yi-Chao Gu, Zhi-Jiong Zhang, Hua-Liang Liu, Hao Su, Hao-Yang Tang, Jia-Min Xu, Meng-Hao Jia, Ming-Cheng Chen, Han-Sen Zhong, Hui Wang, Jiarong Yan, Yi Hu, Jia Huang, Wei -Jun Zhang, Hao Li, Xiao Jiang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao -Yang Lu, Jian-Wei Pan

Summary: Gaussian boson sampling (GBS) is a protocol for demonstrating quantum computational advantage and is mathematically associated with graph-related and quantum chemistry problems. This study investigates the enhancement of GBS over classical stochastic algorithms on noisy quantum devices in the computationally interesting regime. Experimental results show the presence of GBS enhancement with a large photon-click number and robustness under certain noise, which may stimulate the development of more efficient classical and quantum-inspired algorithms.

PHYSICAL REVIEW LETTERS (2023)

Article Instruments & Instrumentation

Free-running 4H-SiC single-photon detector with ultralow afterpulse probability at 266 nm

Chao Yu, Tianyi Li, Xian-Song Zhao, Hai Lu, Rong Zhang, Feihu Xu, Jun Zhang, Jian-Wei Pan

Summary: In this study, a 4H-SiC single-photon avalanche diode (SPAD) based free-running ultraviolet single-photon detector (UVSPD) with ultralow afterpulse probability is reported. A beveled mesa structure is designed and fabricated for the 4H-SiC SPAD, which shows the characteristic of ultralow dark current. A readout circuit of passive quenching and active reset with a tunable hold-off time setting is further developed to significantly suppress the afterpulsing effect. The nonuniformity of photon detection efficiency (PDE) across the SPAD active area is investigated for performance optimization. The compact UVSPD shows a PDE of 10.3%, a dark count rate of 133 kcps, and an afterpulse probability of 0.3% at 266 nm, indicating its potential for practical ultraviolet photon-counting applications.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Quantum Science & Technology

Active learning on a programmable photonic quantum processor

Chen Ding, Xiao-Yue Xu, Yun-Fei Niu, Shuo Zhang, He-Liang Huang, Wan-Su Bao

Summary: To reduce labeling and computational costs in quantum machine learning, the active learning (AL) strategy is used to select a subset of the dataset for training while maintaining performance. Two AL-inspired variational quantum classifiers were designed and implemented to investigate the potential applications and effectiveness of AL in quantum machine learning. The results demonstrate the significant advantage of AL in saving labeling efforts and computational resources.

QUANTUM SCIENCE AND TECHNOLOGY (2023)

Article Quantum Science & Technology

Generation of a time-bin Greenberger-Horne-Zeilinger state with an optical switch

Hsin-Pin Lo, Takuya Ikuta, Koji Azuma, Toshimori Honjo, William J. Munro, Hiroki Takesue

Summary: In this study, a three-photon time-bin Greenberger-Horne-Zeilinger (GHZ) state is generated using a 2 x 2 optical switch as a time-dependent beam splitter. The state is created by entangling time-bin Bell states from a spontaneous parametric down-conversion source and a weak coherent pulse. The characterization of the state is done through measurement estimation, violation of the Mermin inequality, and quantum state tomography, showing a state fidelity exceeding 70%. The three-photon time-bin GHZ state has potential applications in long-distance multi-user quantum communication.

QUANTUM SCIENCE AND TECHNOLOGY (2023)

Article Multidisciplinary Sciences

Generation of genuine entanglement up to 51 superconducting qubits

Sirui Cao, Bujiao Wu, Fusheng Chen, Ming Gong, Yulin Wu, Yangsen Ye, Chen Zha, Haoran Qian, Chong Ying, Shaojun Guo, Qingling Zhu, He-Liang Huang, Youwei Zhao, Shaowei Li, Shiyu Wang, Jiale Yu, Daojin Fan, Dachao Wu, Hong Su, Hui Deng, Hao Rong, Yuan Li, Kaili Zhang, Tung-Hsun Chung, Futian Liang, Jin Lin, Yu Xu, Lihua Sun, Cheng Guo, Na Li, Yong-Heng Huo, Cheng-Zhi Peng, Chao-Yang Lu, Xiao Yuan, Xiaobo Zhu, Jian-Wei Pan

Summary: Scalable generation of genuine multipartite entanglement on a large-scale quantum device is demonstrated. High-fidelity parallel quantum gates are used to prepare and verify intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. The approach enables medium-scale quantum computing with superconducting quantum systems.

NATURE (2023)

Article Physics, Multidisciplinary

Observation of many-body scarring in a Bose-Hubbard quantum simulator

Guo-Xian Su, Hui Sun, Ana Hudomal, Jean-Yves Desaules, Zhao-Yu Zhou, Bing Yang, Jad C. Halimeh, Zhen-Sheng Yuan, Zlatko Papie, Jian-Wei Pan

Summary: The ongoing quest for understanding nonequilibrium dynamics of complex quantum systems has led to the discovery of quantum many-body scarring. This phenomenon allows for the delay of thermalization by preparing the system in special initial states. In this study, the researchers demonstrate many-body scarring in a Bose-Hubbard quantum simulator, using previously unknown initial conditions. This work opens up new possibilities for exploring the relationship between scarring and various quantum phenomena.

PHYSICAL REVIEW RESEARCH (2023)

Article Optics

Leggett-Garg inequalities with deformed Pegg-Barnett phase observables

Hiroo Azuma, William J. Munro, Kae Nemoto

Summary: We investigate the Leggett-Garg inequalities (LGIs) in a boson system by deforming the Pegg-Barnett phase operators. The quantum Fourier transform is used for the required measurements. The explicit forms of the LGIs are derived using the coherent state |alpha) as the initial state, and the violation of LGIs is explored with varying time difference between observations of the phase operators. The nonclassicality of the system remains in the large amplitude limit without dissipation, but diminishes rapidly with dissipation.

PHYSICAL REVIEW A (2023)

Article Optics

Preparation of a quantum degenerate mixture of 23Na 40K molecules and 40K atoms

Jin Cao, Huan Yang, Zhen Su, Xin-Yao Wang, Jun Rui, Bo Zhao, Jian-Wei Pan

Summary: We have successfully prepared a quantum degenerate mixture of 23Na 40K molecules and 40K atoms. The atoms are highly degenerate with a large number ratio, while the molecules are in a moderately degenerate state. The elastic collisions between the atoms and molecules provide a thermalization mechanism, allowing the molecules to reach thermal equilibrium before significant losses occur. The degeneracy of the molecules is maintained for a sufficient time interval for further study and production of ultracold triatomic molecular gases.

PHYSICAL REVIEW A (2023)

Article Optics

Impact of the form of weighted networks on the quantum extreme reservoir computation

Aoi Hayashi, Akitada Sakurai, Shin Nishio, William J. Munro, Kae Nemoto

Summary: The quantum extreme reservoir computation (QERC) is a versatile quantum neural network model that addresses the optimization problem of different instances by generating complex quantum reservoirs. In this research, a periodically driven system Hamiltonian dynamics is used as the quantum feature map and characterized and evaluated by weighted networks. Additionally, a simple Hamiltonian model based on a disordered discrete time crystal achieves near-optimal performance without the need for gate-by-gate programming of the quantum processor.

PHYSICAL REVIEW A (2023)

No Data Available