4.7 Article

Strain rate, temperature and deformation state effect on Ecoflex 00-50 silicone mechanical behaviour

Journal

MECHANICS OF MATERIALS
Volume 178, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mechmat.2023.104560

Keywords

Ecoflex silicone elastomer; Thermo-mechanical characterization; Deformation states; Dissipative behaviour

Ask authors/readers for more resources

In this work, the thermo-mechanical properties of the commercially available silicone elastomer Ecoflex Shore hardness 00-50 were extensively characterized to fill the gap in relevant literature. The material's mechanical behavior was studied under different deformation states, strain rates, and temperatures through monotonic and cyclic loading tests, revealing its time-dependent response and the contribution of dissipative deformation phenomena. Uniaxial tensile tests conducted at various temperatures showed the material's sensitivity to temperature, with a decrease in ultimate stress and strain as temperature increased. These test results were used to define a failure envelope, which provides valuable information on the material's ultimate stress and strain at any temperature and strain rate for the first time.
Silicone elastomers are extremely attractive materials due to their wide range of possible applications, from biomedical engineering to soft robotics. In this work, an extensive thermo-mechanical characterization of Ecoflex Shore hardness 00-50, a commercially available silicone elastomer, has been carried out to compensate for the lack of relevant literature. The mechanical behaviour of the material has been characterized by performing monotonic and cyclic loading tests. These tests were performed in different deformation states, i.e. uniaxial tension, pure shear and biaxial tension, at different strain rates and temperatures. Experimental findings allowed to highlight the material time-dependent response and quantify the contribution of dissipative deformation phenomena to the overall strain energy. Uniaxial tensile tests performed at different temperatures (between -40 degrees C and 140 degrees C) showed that the material mechanical behaviour is sensitive to temperature in this range: a decrease of the ultimate stress and strain has been observed with increasing temperature. Finally, the data obtained from the latter tests have been used to define a failure envelope, applied for the first time to Ecoflex silicones, and valuable to describe the material ultimate stress and strain at any temperature and strain rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mechanics

Time-temperature equivalence in environmental stress cracking of high-density polyethylene

Marco Contino, Luca Andena, Marta Rink, Giuliano Marra, Stefano Resta

ENGINEERING FRACTURE MECHANICS (2018)

Article Mechanics

A comparison between K and G approaches for a viscoelastic material: the case of environmental stress cracking of HDPE

Marco Contino, Luca Andena, Vincenzo La Valle, Marta Rink, Giuliano Marra, Stefano Resta

MECHANICS OF TIME-DEPENDENT MATERIALS (2020)

Article Mechanics

Environmental stress cracking of high-density polyethylene under plane stress conditions

Marco Contino, Luca Andena, Marta Rink

Summary: High-Density Polyethylene is prone to Environmental Stress Cracking when mechanically stressed in the presence of solutions containing surfactants. The production process has negligible influence on the Environmental Stress Cracking Resistance of the considered polyethylene.

ENGINEERING FRACTURE MECHANICS (2021)

Article Polymer Science

Microalgal biomass as renewable biofiller in natural rubber compounds

Emanuela Bellinetto, Riccardo Ciapponi, Marco Contino, Claudia Marano, Stefano Turri

Summary: Microalgal biomasses were studied as potential renewable biofillers in natural rubber compounds to replace carbon black. It was found that the microalgal biomass can increase rubber tensile strength and modulus while decreasing thermal stability and fracture toughness.

POLYMER BULLETIN (2022)

Article Mechanics

On the influence of time-dependent behaviour of elastomeric wave energy harvesting membranes using experimental and numerical modelling techniques

Ieuan Collins, Marco Contino, Claudia Marano, Ian Masters, Mokarram Hossain

Summary: The response of elastomeric polymers depends on composition, temperature, and loading history. Hysteresis, dissipation, and creep are important considerations for elastomer membrane wave energy converters. Natural rubber is a good candidate due to its stretchability, resistance to the environment, and fatigue properties.

EUROPEAN JOURNAL OF MECHANICS A-SOLIDS (2023)

Proceedings Paper Engineering, Mechanical

Fracture of high-density polyethylene used for bleach bottles

M. Contino, L. Andena, M. Rink, A. Colomb, G. Marra

21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21) (2016)

Article Materials Science, Multidisciplinary

Modeling the thermo-responsive behaviors of polydomain and monodomain nematic liquid crystal elastomers

Baihong Chen, Changyue Liu, Zengting Xu, Zhijian Wang, Rui Xiao

Summary: In this study, both polydomain and monodomain liquid crystal elastomers (LCEs) were synthesized and their shape change with temperature under a certain stress level was characterized. A thermo-order-mechanical coupling model was developed to predict the shape change of LCEs, showing good consistency with experimental results.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

Atomistic and continuum study of interactions between super-screw dislocations and coherent twin boundaries in L12-structured Ni3Al

Peng Wang, Fei Xu, Yiding Wang, Jun Song, Cheng Chen

Summary: This study investigates the interplay of super-screw dislocations and coherent twin boundary (CTB) in Ni3Al using molecular dynamics simulations and dislocation continuum theory. Various interaction mechanisms are observed depending on the stress and dislocation gliding pathways. A continuum model framework is developed to evaluate the critical shear stress required for CTB to accommodate dislocations along different pathways, considering the effects of anti-phase boundary (APB) and Complex Stacking Fault (CSF). The study suggests that the resistant force of CTB against all gliding dislocations is a more appropriate metric for quantifying its strength.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

Phase field modeling of thermal fatigue crack growth in elastoplastic solids and experimental verification

Chenyu Du, Haitao Cui, Hongjian Zhang, Zhibin Cai, Weikuo Zhai

Summary: A thermal-elastoplastic phase field model was developed to simulate thermal fatigue crack growth. The accuracy and availability of the model were verified through typical examples. The results indicate that the proposed model effectively simulates the process of thermal fatigue crack propagation in elastoplastic solids. The appropriate regularization length needs to be determined based on experimental results.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

Compression of filled, open-cell, 3D-printed Kelvin lattices

J. Carlsson, A. Kuswoyo, A. Shaikeea, N. A. Fleck

Summary: The sensitivity of the compressive strength of a polymeric Kelvin lattice to the presence of an epoxy core is investigated both experimentally and numerically. The study shows that the epoxy core prevents the formation of crush bands in the lattice and changes its deformation mode. At finite strain, the strength of the lattice is degraded by bending failure and cracking of the struts and adjacent core, leading to the formation of vertical fissures.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

Isolated disclination in an orthotropic von Kármán elastic plate

Saptarshi Paul, Anurag Gupta

Summary: In this study, we investigate the geometry and mechanics of the buckled orthotropic von Karman elastic plate with free boundary condition, in the presence of an isolated positive or negative disclination. The shape of the buckled plate is cone-like for a positive disclination and saddle-like for a negative disclination. With increasing orthotropy, the shape of the buckled plate becomes more tent-like and the Gaussian curvature spreads along the ridge of the tent. The stress fields are focused in the neighborhood of the defect point and the ridge, indicating that most of the stretching energy is accommodated in these singular regions.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

An infill-based approach towards stiffer auxetic lattices: Design and study of enhanced in-plane elastic properties

Antu Acharya, Vikram Muthkani, Anirvan DasGupta, Atul Jain

Summary: This study proposes filler-based and infill-based strategies for creating auxetic lattices with enhanced stiffness. The elastic properties of the sinusoidal re-entrant honeycomb lattice are developed and validated using finite element models. Parametric studies are conducted to find combinations leading to enhanced stiffness with minor loss in auxeticity. The results demonstrate the possibility of achieving a significant increment in stiffness while retaining significant auxeticity. The proposed approaches outperform existing approaches in terms of stiffness and auxeticity.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

A multi-scale approach to predict shrinkage and creep of cementitious composite in a hygro-thermo-chemo-mechanical framework-theoretical formulation and numerical validation

Biswajit Pal, Ananth Ramaswamy

Summary: This study presents a multi-scale approach to simulate the shrinkage and creep of concrete, addressing the limitations of existing macroscopic prediction models due to the heterogeneous nature of concrete. The model is validated with experimental data and compared to national codes and macroscopic models, demonstrating its effectiveness in overcoming the gaps in existing models.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

A residual stress-dependent mixed-mode phase-field model: Application to assessing the role of tailored residual stresses on the mechanical performance of ceramic laminates

Akash Kumar Behera, Mohammad Masiur Rahaman, Debasish Roy

Summary: Ceramics have attractive properties but low fracture toughness is a major drawback. There is interest in improving the mechanical performance of ceramics by tailoring residual stresses. However, there is a lack of computational models that can accurately predict crack paths and quantify the improved fracture toughness.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

A theoretical model for the prediction of fracture process zone in concrete under fatigue loading: Energy based approach

Bineet Kumar, Sandeep Kumar Dubey, Sonalisa Ray

Summary: This study aims to develop an energy-based theoretical formulation for predicting the evolution of the fracture process zone in concrete under fatigue loading. Experimental results and calibrations indicate that the specimen size and aggregate size affect the fracture behavior and process zone length of concrete.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

A shear-lag model for laminated beams with extreme modulus mismatch between layers

Zheliang Wang, Hao Sheng, Xinyi Lin, Yifan Rao, Jia Liu, Nanshu Lu

Summary: In this study, an analytical framework is proposed for investigating the behavior of laminated beams with any number of layers under various bending conditions, and the theory is validated through finite element analysis. It was found that the number of layers, applied deformation, layer properties, and layer aspect ratio have an impact on the equivalent flexural rigidity.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

The viscoelastic behavior of lignin: Quantification through nanoindentation relaxation testing on hot-pressed technical lignin samples from various origins

Michael Schwaighofer, Markus Konigsberger, Luis Zelaya-Lainez, Markus Lukacevic, Sebastian Serna-Loaiza, Michael Harasek, Florian Zikeli, Anton Friedl, Josef Fussl

Summary: In this study, nanoindentation relaxation tests were re-evaluated on five industrial lignins extracted from different feedstocks. It was found that the viscoelastic properties of all tested lignins were practically identical and independent of the feedstock and the extraction processes.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

Generative design and mechanical properties of the lattice structures for tensile and compressive loading conditions fabricated by selective laser melting

Tian Han, Dandan Qi, Jia Ma, Chaoyang Sun

Summary: In this study, a generative design method was used to propose new modified lattice structures suitable for tensile and compressive loading conditions. By conducting experimental and finite element analyses, it was confirmed that the derived structures have improved load-bearing capacity and energy absorption compared to the original structures. The effects of shape parameters on mechanical properties were also discussed.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

Phase transformation and incidental effects of metastable crystalline TiAlN on the material removal mechanism

Wenbin Zheng, Jay Airao, Ramin Aghababaei

Summary: Spinodal decomposition of Ti1-xAlxN crystal structure significantly affects their physical properties. This study uses three-dimensional molecular dynamics simulations to investigate the phase transformation mechanism and surface finish during material removal in TiAlN. The simulations reveal that the aluminum content and cutting depth have a significant influence on the phase transformation process through spinodal decomposition.

MECHANICS OF MATERIALS (2024)

Article Materials Science, Multidisciplinary

Low cycle fatigue behaviour of engineering metallic materials: Review on cyclic deformation micro-mechanism

Atasi Ghosh

Summary: The micro-mechanism of low cycle fatigue deformation behavior has been summarized and the recent development in the approach of numerical simulation of cyclic stress-strain behavior of polycrystalline metallic materials at multi-scale has been discussed.

MECHANICS OF MATERIALS (2024)