4.6 Article

Alternative and facile production pathway towards obtaining high surface area PtCo/C intermetallic catalysts for improved PEM fuel cell performance

Journal

RSC ADVANCES
Volume 13, Issue 7, Pages 4601-4611

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ra07780a

Keywords

-

Ask authors/readers for more resources

The design of stable and finely dispersed platinum or platinum alloy nanoparticles on the carbon support is crucial for controlling the performance of PEM fuel cells. In this study, a PtCo/C catalyst with intermetallic structures is synthesized and shows significantly narrowed particle size distribution compared to commercial benchmark catalysts. The improved dispersion of PtCo particles leads to an increase in electrochemically active surface area and a more efficient usage of precious metal, resulting in enhanced performance of PEM fuel cells.
The design of catalysts with stable and finely dispersed platinum or platinum alloy nanoparticles on the carbon support is key in controlling the performance of proton exchange membrane (PEM) fuel cells. In the present work, an intermetallic PtCo/C catalyst is synthesized via double-passivation galvanic displacement. TEM and XRD confirm a significantly narrowed particle size distribution for the catalyst particles compared to commercial benchmark catalysts (Umicore PtCo/C). Only about 10% of the mass fraction of PtCo particles show a diameter larger than 8 nm, whereas this is up to or even more than 35% for the reference systems. This directly results in a considerable increase in electrochemically active surface area (96 m(2) g(-1)vs. >70 m(2) g(-1)), which confirms the more efficient usage of precious catalyst metal in the novel catalyst. Single-cell tests validate this finding by improved PEM fuel cell performance. Reducing the cathode catalyst loading from 0.4 mg cm(-2) to 0.25 mg cm(-2) resulted in a power density drop at an application-relevant 0.7 V of only 4% for the novel catalyst, compared to the 10% and 20% for the commercial benchmarks reference catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available