4.2 Article

Effect of a Balanced Concentration of Hydrogen on Graphene CVD Growth

Journal

JOURNAL OF NANOMATERIALS
Volume 2016, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2016/9640935

Keywords

-

Funding

  1. Greek State Scholarships Foundation
  2. AGAUR from the Generalitat de Catalunya [2014SGR984]
  3. MICINN from Spanish Government [MAT2010-20468, ENE2014-56109-C3-1-R]

Ask authors/readers for more resources

The extraordinary properties of graphene make it one of the most interesting materials for future applications. Chemical vapor deposition (CVD) is the synthetic method that permits obtaining large areas of monolayer graphene. To achieve this, it is important to find the appropriate conditions for each experimental system. In our CVD reactor working at low pressure, important factors appear to be the pretreatment of the copper substrate, considering both its cleaning and its annealing before the growing process. The carbon precursor/hydrogen flow ratio and its modification during the growth are significant in order to obtain large area graphene crystals with few defects. In this work, we have focused on the study of the methane and the hydrogen flows to control the production of single layer graphene (SLG) and its growth time. In particular, we observe that hydrogen concentration increases during a usual growing process (keeping stable the methane/hydrogen flow ratio) resulting in etched domains. In order to balance this increase, a modification of the hydrogen flow results in the growth of smooth hexagonal SLG domains. This is a result of the etching effect that hydrogen performs on the growing graphene. It is essential, therefore, to study the moderated presence of hydrogen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available