4.7 Article

Phosphorus accelerate the sulfur cycle by promoting the release of malodorous volatile organic sulfur compounds from Microcystis in freshwater lakes

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 845, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.157280

Keywords

Taste and odor; Sulfur cycle; Phosphorus; Cyanobacteria; Freshwater lake

Funding

  1. National Natural Science Founda- tion of China [31700400, 91951110]
  2. Natural Science Foundation of Qinghai Province [2019-ZJ-933Q]
  3. University Synergy Innovation Program of Anhui Province [GXXT-2020-075]

Ask authors/readers for more resources

This study revealed that common freshwater cyanobacterium Microcystis are important producers of volatile organic sulfur compounds (VSCs) in freshwaters. Dimethyl sulfide, dimethyl disulfide, and isopropyl methyl sulfide were identified as the main VSCs. Phosphorus was found to be one of the key factors regulating VSCs production. These findings are significant for understanding the categories, sources, and environmental regulatory factors of VSCs in freshwaters, as well as the impact of freshwater eutrophication and Microcystis blooms on sulfur cycle and water odor.
Volatile organic sulfur compounds (VSCs) released by algae are of great significance in sulfur cycle, climate regulation and biological information transmission, and they also caused taste and odor in freshwaters. However, the categories, sources, and environmental regulatory factors of VSCs in freshwaters were less known. Here, we show that eight com-mon freshwater cyanobacterium Microcystis, which bloom in freshwaters over the world, are found to be important producers of VSCs. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and isopropyl methyl sulfide (IPMS) are the main VSCs with the highest concentrations 184.81 nmol/L, 162.01 nmol/L and 101.55 nmol/L, respectively. The amount of VSCs released from those Microcystis varied greatly, M. elabens, M. panniformis and M. flos-aquae released the largest amount of VSCs (1260.52 nmol S/L, 1154.75 nmol S/L and 670.58 nmol S/L), and M. wesenbergii had the smallest release amount. We also found for the first time that phosphorus (P) was one of the important factors for the regulation VSCs from most Microcystis. P can elevate the release of DMS by promoting the biomass and DMS yields of most Microcystis in the range 0.05 mg/L to 0.5 mg/L. Similar results were also found in 16 lakes at three dif-ferent spatiotemporal scales. Overall, we revealed that the common freshwater Microcystis were able to release diverse thioethers, and the major VSCs were significantly influenced by water P concentrations. In the context of global fresh-water eutrophication and Microcystis bloom, freshwater cyanobacteria driven sulfur cycle and water odor will probably be further strengthened.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Plant Sciences

Carbon, Nitrogen, and Phosphorus Allocation Strategy Among Organs in Submerged Macrophytes Is Altered by Eutrophication

Qingyang Rao, Haojie Su, Xuwei Deng, Wulai Xia, Lantian Wang, Wenjian Cui, Linwei Ruan, Jun Chen, Ping Xie

FRONTIERS IN PLANT SCIENCE (2020)

Article Engineering, Environmental

Stoichiometric and physiological mechanisms that link hub traits of submerged macrophytes with ecosystem structure and functioning

Qingyang Rao, Haojie Su, Linwei Ruan, Xuwei Deng, Lantian Wang, Xiao Rao, Jiarui Liu, Wulai Xia, Pengke Xu, Hong Shen, Jun Chen, Ping Xie

Summary: Eutrophication strongly impacts plant stoichiometric characteristics and physiological status. Through a study of 26 macrophytic shallow lakes, it was found that organ phosphorus (P), starch, and total nonstructural carbohydrate (TNC) contents are key traits affecting plant phenotype. Additionally, eutrophication not only influences community structure, but also affects plant biomass and ecosystem by inhibiting the predominance of more homeostatic species and the production of carbohydrates.

WATER RESEARCH (2021)

Article Environmental Sciences

Phosphorus enrichment affects trait network topologies and the growth of submerged macrophytes

Qingyang Rao, Haojie Su, Linwei Ruan, Wulai Xia, Xuwei Deng, Lantian Wang, Pengke Xu, Hong Shen, Jun Chen, Ping Xie

Summary: Research has shown that under high water TP enrichment, the connectedness and functional potentials of plant trait networks decrease, which is correlated with reduced tissue carbohydrates. The study reveals the correlations between plant trait network topology and functions under high nutrient conditions.

ENVIRONMENTAL POLLUTION (2022)

Article Environmental Sciences

Linking the network topology of plant traits with community structure, functioning, and adaptive strategies of submerged macrophytes

Lantian Wang, Qingyang Rao, Haojie Su, Linwei Ruan, Xuwei Deng, Jiarui Liu, Jun Chen, Ping Xie

Summary: Plant trait network analysis can reveal complex relationships among traits and their topology. This study found that water total phosphorus significantly influenced the topology of trait networks. Under low or high nutrient levels, the network structure was dispersed with lower connectivity and higher modularity, while moderate nutrient levels showed a different network structure. Network connectivity was positively correlated with community biomass and homeostasis, while network modularity was negatively correlated with community biomass and homeostasis.

SCIENCE OF THE TOTAL ENVIRONMENT (2022)

Article Biodiversity Conservation

Eutrophication decreases ecological resilience by reducing species diversity and altering functional traits of submerged macrophytes

Chaoyue Cheng, Jun Chen, Haojie Su, Jianfeng Chen, Qingyang Rao, Jun Yang, Qingchuan Chou, Lantian Wang, Xuwei Deng, Ping Xie

Summary: Understanding positive feedback mechanisms in macrophyte-dominated lakes is crucial for ecosystem resilience. This study found that morphological complexity and plasticity are related to phosphorus homeostasis and ecosystem structure, functioning, and stability. The study also showed that positive feedback strength in macrophyte-dominated lakes is dependent on biomass and diversity. Eutrophication decreases positive feedback strength and resilience by reducing biomass, complexity, and diversity. Functional traits and species diversity should be considered for building resilient ecosystems.

GLOBAL CHANGE BIOLOGY (2023)

Article Environmental Sciences

Comparing nearshore and embayment scale assessments of submarine groundwater discharge: Significance of offshore groundwater discharge as a nutrient pathway

Toshimi Nakajima, Mao Kuragano, Makoto Yamada, Ryo Sugimoto

Summary: This study compared the contribution of submarine groundwater discharge (SGD) to river nutrient budgets at nearshore and embayment scales, and found that SGD-derived nutrients become more important at larger spatial scales.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Impact of NO2 emissions from household heating systems with wall-mounted gas stoves on indoor and ambient air quality in Chinese urban areas

Fan Liu, Lei Zhang, Chongyang Zhang, Ziguang Chen, Jingguang Li

Summary: NO2 emissions from wall-mounted gas stoves used for household heating have become a significant source of indoor pollution in Chinese urban areas. The high indoor concentration of NO2 poses potential health risks to residents. It is urgently necessary to establish relevant regulations and implement emission reduction technologies to reduce NO2 emissions from wall-mounted gas stoves.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Letter Environmental Sciences

Letter to the editor regarding Collard et al. (2023): Persistence and mobility (defined as organic-carbon partitioning) do not correlate to the detection of substances found in surface and groundwater: Criticism of the regulatory concept of persistent and mobile substances

Hans Peter H. Arp, Raoul Wolf, Sarah E. Hale, Sivani Baskaran, Juliane Gluege, Martin Scheringer, Xenia Trier, Ian T. Cousins, Harrie Timmer, Roberta Hofman-Caris, Anna Lennquist, Andre D. Bannink, Gerard J. Stroomberg, Rosa M. A. Sjerps, Rosa Montes, Rosario Rodil, Jose Benito Quintana, Daniel Zahn, Herve Gallard, Tobias Mohr, Ivo Schliebner, Michael Neumann

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Harnessing the composition of dissolved organic matter in lagoon sediment in association with rare earth elements using fluorescence and UV-visible absorption spectroscopy

Philomina Onyedikachi Peter, Binessi Edouard Ifon, Francois Nkinahamira, Kayode Hassan Lasisi, Jiangwei Li, Anyi Hu, Chang-Ping Yu

Summary: This study investigates the relationship between dissolved organic matter (DOM) and Rare Earth Elements (REEs) in sediments from Yundang Lagoon, China. The results show four distinct fluorescent components, with protein-like substances being the most prevalent. Additionally, the total fluorescence intensity and LREE concentrations exhibit a synchronized increase from Outer to Inner to Songbai Lake core sediments. The findings demonstrate a strong correlation between DOM content and pollution levels.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity

Surya Gupta, Pasquale Borrelli, Panos Panagos, Christine Alewell

Summary: The objective of this study is to incorporate soil hydraulic properties into the erodibility factor (K) of USLE-type models. By modifying and improving the existing equations for soil texture and permeability, the study successfully included information on saturated hydraulic conductivity (Ksat) into the calculation of K factor. Using the Random Forest machine learning algorithm, two independent K factor maps with different spatial resolutions were generated. The results show that the decrease in K factor values has a positive impact on the modeling of soil erosion rates.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Comparison of adsorption-extraction (AE) workflows for improved measurements of viral and bacterial nucleic acid in untreated wastewater

Jesmin Akter, Wendy J. M. Smith, Yawen Liu, Ilho Kim, Stuart L. Simpson, Phong Thai, Asja Korajkic, Warish Ahmed

Summary: The choice of workflow in wastewater surveillance has a significant impact on SARS-CoV-2 concentrations, while having minimal effects on HF183 and no effect on HAdV 40/41 concentrations. Certain components in the workflow can be interchangeable, but factors such as buffer type, chloroform, and homogenization speed can affect the recovery of viruses and bacteria.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Insights the dominant contribution of biomass burning to methanol-soluble PM2.5 bounded oxidation potential based on multilayer perceptron neural network analysis in Xi'an, China

Yu Luo, Xueting Yang, Diwei Wang, Hongmei Xu, Hongai Zhang, Shasha Huang, Qiyuan Wang, Ningning Zhang, Junji Cao, Zhenxing Shen

Summary: Atmospheric PM2.5, which can generate reactive oxygen species (ROS), is associated with cardiorespiratory morbidity and mortality. The study found that both the mass concentration of PM2.5 and the DTT activity were higher during the heating season than during the nonheating season. Combustion sources were the primary contributors to DTT activity during the heating season, while secondary formation dominated during the nonheating season. The study also revealed that biomass burning had the highest inherent oxidation potential among all sources investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

A macroplastic vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i

Erin L. Murphy, Leah R. Gerber, Chelsea M. Rochman, Beth Polidoro

Summary: Plastic pollution has devastating consequences for marine organisms. This study uses a trait-based framework to develop a vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i. The index ranks 63 study species based on their vulnerability to macroplastic pollution, providing valuable information for species monitoring and management priorities.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem

Kenji Maurice, Amelia Bourceret, Sami Youssef, Stephane Boivin, Liam Laurent-Webb, Coraline Damasio, Hassan Boukcim, Marc-Andre Selosse, Marc Ducousso

Summary: Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Little is known about microbial community resistance and adaptation to disturbances, hindering our understanding of recovery latency and implications for ecosystem functioning. This study found that anthropic disturbance and natural disturbance have different effects on the topology and stability of soil microbial networks.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Adsorption of metal ions by oceanic manganese nodule and deep-sea sediment: Behaviour, mechanism and evaluation

Yunhao Li, Yali Feng, Haoran Li, Yisong Yao, Chenglong Xu, Jinrong Ju, Ruiyu Ma, Haoyu Wang, Shiwei Jiang

Summary: Deep-sea mining poses a serious threat to marine ecosystems and human health by disturbing sediment and transmitting metal ions through the food chain. This study developed a new regenerative adsorption material, OMN@SA, which effectively removes metal ions. The adsorption mechanism and performance of the material for metal ion fixation were investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Advanced oxidation process of valsartan by activated peroxymonosulfate: Chemical characterization and ecotoxicological effects of its byproducts

Antonio Medici, Margherita Lavorgna, Marina Isidori, Chiara Russo, Elena Orlo, Giovanni Luongo, Giovanni Di Fabio, Armando Zarrelli

Summary: Valsartan, a widely used antihypertensive drug, has been detected in high concentrations in surface waters due to its unchanged excretion and incomplete degradation in wastewater treatment plants. This study investigated the degradation of valsartan and identified 14 degradation byproducts. The acute and chronic toxicity of these byproducts were evaluated in key organisms in the freshwater trophic chain.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight

Jiang Lin, Lianbao Chi, Qing Yuan, Busu Li, Mingbao Feng

Summary: This study investigated the photodegradation behavior and product formation of two representative pharmaceuticals in simulated estuary water. The study found that the formed transformation products of these pharmaceuticals have potential toxicity on marine organisms, including oxidative stress and damage to cellular components.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Association of ambient air pollution and pregnancy rate among women undergoing assisted reproduction technology in Fujian, China: A retrospective cohort study

Hua Fang, Dongdong Jiang, Ye He, Siyi Wu, Yuehong Li, Ziqi Zhang, Haoting Chen, Zixin Zheng, Yan Sun, Wenxiang Wang

Summary: This study revealed that exposure to lower levels of air pollutants led to decreased pregnancy rates, with PM10, NO2, SO2, and CO emerging as the four most prominent pollutants. Individuals aged 35 and above exhibited heightened susceptibility to pollutants.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

The predictive machine learning model of a hydrated inverse vulcanized copolymer for effective mercury sequestration from wastewater

Ali Shaan Manzoor Ghumman, Rashid Shamsuddin, Amin Abbasi, Mohaira Ahmad, Yoshiaki Yoshida, Abdul Sami, Hamad Almohamadi

Summary: In this study, inverse vulcanized polysulfides (IVP) were synthesized by reacting molten sulfur with 4-vinyl benzyl chloride, and then functionalized using N-methyl D-glucamine (NMDG). The functionalized IVP showed a high mercury adsorption capacity and a machine learning model was developed to predict the amount of mercury removed. Furthermore, the functionalized IVP can be regenerated and reused, providing a sustainable and cost-effective adsorbent.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death

Rita Bonfiglio, Renata Sisto, Stefano Casciardi, Valeria Palumbo, Maria Paola Scioli, Erica Giacobbi, Francesca Servadei, Gerry Melino, Alessandro Mauriello, Manuel Scimeca

Summary: This study investigated the presence of aluminum in human colon cancer samples and its potential association with biological processes involved in cancer progression. Aluminum was found in tumor areas of 24% of patients and was associated with epithelial to mesenchymal transition (EMT) and cell death. Additional analyses revealed higher tumor mutational burden and mutations in genes related to EMT and apoptosis in aluminum-positive colon cancers. Understanding the molecular mechanisms of aluminum toxicity may improve strategies for the management of colon cancer patients.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)