4.7 Article

Preparation of Mn-FeOX/ZSM-5 by high-gravity method for heterogeneous catalytic ozonation of nitrobenzene

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 380, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2022.134997

Keywords

Nitrobenzene; High gravity; Ozone; Heterogeneous catalytic ozonation; Mn-FeOX/ZSM-5

Funding

  1. Fund for Shanxi 1331 Project [nuc2021-006]
  2. Key Technologies of Sponge Demonstration City Construction of Changzhi, Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province [20200004]
  3. Shanxi Scholarship Council of China [2019032]

Ask authors/readers for more resources

The properties and application of Mn-FeOX/ZSM-5 catalyst prepared by high-gravity method for wastewater treatment were studied. The catalyst showed high catalytic activity and stability, and could effectively degrade pollutants.
Mn-FeOX/ZSM-5 is a good catalyst for wastewater treatment, but the conventional methods for preparing Mn-FeOX/ZSM-5 have the problems of non-uniform dispersion of active components and long preparation time. As the liquid-solid mass transfer process could be effectively increased in a high-gravity field, Mn-FeOX/ZSM-5 was prepared by high-gravity method in this study, and its properties were characterized by XRD, FTIR and SEM. The stability of Mn-FeOX/ZSM-5 and the loss of active components were investigated, and the mechanism of Mn-FeOX/ZSM-5 catalyzed the ozonation of nitrobenzene (NB) was also discussed. The results show that the specific surface area of Mn-FeOX/ZSM-5-h is 292.103 m(2)/g and the active components are well dispersed. Mn-FeOX/ZSM-5-h has the best catalytic activity under the conditions of precursor solution concentration = 0.3 mol/L, liquid flow rate = 60 L/h, and high gravity factor beta = 30, and the removal efficiency of TOC reaches 87.5% within 25 min. The catalyst has good stability and only 1.10% of Mn and 0.63% of Fe are lost on average after 5 cycles. However, the removal rate of NB is significantly reduced with the addition of tert-butyl alcohol (TBA), implying that center dot OH plays a dominant role in catalytic ozonation of NB by Mn-FeOX/ZSM-5. The electron paramagnetic resonance results confirm that center dot OH is produced in the degradation process. In conclusion, Mn-FeOX/ZSM-5-h prepared by high-gravity method is a good catalyst for catalytic ozonation of NB because of its high catalytic activity and stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Green & Sustainable Science & Technology

Relative evaluation of probabilistic methods for spatio-temporal wind forecasting

Lars odegaard Bentsen, Narada Dilp Warakagoda, Roy Stenbro, Paal Engelstad

Summary: This study investigates uncertainty modeling in wind power forecasting using different parametric and non-parametric methods. Johnson's SU distribution is found to outperform Gaussian distributions in predicting wind power. This research contributes to the literature by introducing Johnson's SU distribution as a candidate for probabilistic wind forecasting.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

Comparison of ethane recovery processes for lean gas based on a coupled model

Xing Liu, Qiuchen Wang, Yunhao Wen, Long Li, Xinfang Zhang, Yi Wang

Summary: This study analyzes the characteristics of process parameters in three lean gas ethane recovery processes and establishes a prediction and multiobjective optimization model for ethane recovery and system energy consumption. A new method for comparing ethane recovery processes for lean gas is proposed, and the addition of extra coolers improves the ethane recovery. The support vector regression model based on grey wolf optimization demonstrates the highest prediction accuracy, and the multiobjective multiverse optimization algorithm shows the best optimization performance and diversity in the solutions.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

A novel deep-learning framework for short-term prediction of cooling load in public buildings

Cairong Song, Haidong Yang, Xian-Bing Meng, Pan Yang, Jianyang Cai, Hao Bao, Kangkang Xu

Summary: The paper proposes a novel deep learning-based prediction framework, aTCN-LSTM, for accurate cooling load predictions. The framework utilizes a gate-controlled multi-head temporal convolutional network and a sparse probabilistic self-attention mechanism with a bidirectional long short-term memory network to capture both temporal and long-term dependencies in the cooling load sequences. Experimental results demonstrate the effectiveness and superiority of the proposed method, which can serve as an effective guide for HVAC chiller scheduling and demand management initiatives.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

The impact of social interaction and information acquisition on the adoption of soil and water conservation technology by farmers: Evidence from the Loess Plateau, China

Zhe Chen, Xiaojing Li, Xianli Xia, Jizhou Zhang

Summary: This study uses survey data from the Loess Plateau in China to evaluate the impact of social interaction on the adoption of soil and water conservation (SWC) technology by farmers. The study finds that social interaction increases the likelihood of farmers adopting SWC, and internet use moderates this effect. The positive impact of social interaction on SWC adoption is more pronounced for farmers in larger villages and those who join cooperative societies.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

Study on synergistic heat transfer enhancement and adaptive control behavior of baffle under sudden change of inlet velocity in a micro combustor

Chenghua Zhang, Yunfei Yan, Kaiming Shen, Zongguo Xue, Jingxiang You, Yonghong Wu, Ziqiang He

Summary: This paper reports a novel method that significantly improves combustion performance, including heat transfer enhancement under steady-state conditions and adaptive stable flame regulation under velocity sudden increase.

JOURNAL OF CLEANER PRODUCTION (2024)