4.7 Article

Ameliorative Effects of Silicon against Salt Stress in Gossypium hirsutum L.

Journal

ANTIOXIDANTS
Volume 11, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/antiox11081520

Keywords

salinity; silicon; chloroplast ultrastructure; antioxidant enzymes; photosynthetic performance

Funding

  1. Natural Science Foundation of Xinjiang Uygur Autonomous Region [2020D01B61]
  2. National Natural Science Foundation of China [32001481]
  3. Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

Ask authors/readers for more resources

This study found that silicon (Si) can enhance the photosynthesis rate and growth of cotton under salt stress, while reducing reactive oxygen species (ROS) accumulation. Si addition also enhanced antioxidant enzyme activity and protected chloroplast structure in salt-stressed cotton. Additionally, Si increased stomatal density and aperture in salt-stressed cotton seedlings.
Silicon (Si) could alleviate the adverse effect of salinity in many crops, but the effect in cotton remains unclear. In this study, we evaluated the role of Si in regulating the salt stress tolerance of cotton by analyzing the induced morpho-physiological changes. A hydroponic experiment was conducted by using contrasting salt-tolerant cotton genotypes (sensitive Z0102; tolerant Z9807) and four treatments (CK, control; CKSi, 0.4 mM Si; NaCl, 150 mM NaCl; NaClSi, 150 mM NaCl+0.4 mM Si). The results showed that Si significantly enhanced the net photosynthesis rate and improved the growth of cotton seedling under salt stress in both salt-sensitive and salt-tolerant genotypes. Exogenous Si significantly reduced the accumulation of reactive oxygen species (ROS) and decreased the malondialdehyde (MDA) content in salt-stressed cotton. In addition, the application of Si up-regulated the expression of CAT1, SODCC and POD, and significantly enhanced the antioxidant enzymatic activities, such as catalase (CAT) and peroxidase (POD), of the salt-stressed cotton seedlings. Further, Si addition protected the integrity of the chloroplast ultrastructure, including key enzymes in photosynthesis such as ferredoxin-NADP reeducates (FNR), ATP synthase (Mg2+Ca2+-ATPase) and ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO), and the structure and function of the photosynthetic apparatus PSII from salt stress. Moreover, Si significantly increased the effective stomatal density and stomatal aperture in the salt-stressed cotton seedlings. Taken together, Si could likely ameliorate adverse effects of salt stress on cotton by improving the ROS scavenging ability and photosynthetic capacity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available