4.7 Article

Bootstrap embedding: An internally consistent fragment-based method

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 145, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4960986

Keywords

-

Funding

  1. NSF [CHE-1464804]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1464804] Funding Source: National Science Foundation

Ask authors/readers for more resources

Strong correlation poses a difficult problem for electronic structure theory, with computational cost scaling quickly with system size. Fragment embedding is an attractive approach to this problem. By dividing a large complicated system into smaller manageable fragments embedded in an approximate description of the rest of the system, we can hope to ameliorate the steep cost of correlated calculations. While appealing, these methods often converge slowly with fragment size because of small errors at the boundary between fragment and bath. We describe a new electronic embedding method, dubbed Bootstrap Embedding,a self-consistent wavefunction-in-wavefunction embedding theory that uses overlapping fragments to improve the description of fragment edges. We apply this method to the one dimensional Hubbard model and a translationally asymmetric variant, and find that it performs very well for energies and populations. We find Bootstrap Embedding converges rapidly with embedded fragment size, overcoming the surface-area-to-volume-ratio error typical of many embedding methods. We anticipate that this method may lead to a low-scaling, high accuracy treatment of electron correlation in large molecular systems. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available