4.7 Article

Visualization and analysis of the Kohn-Sham kinetic energy density and its orbital-free description in molecules

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 144, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4942016

Keywords

-

Funding

  1. National Science Foundation [DMR-0812195]

Ask authors/readers for more resources

We visualize the Kohn-Sham kinetic energy density (KED) and the ingredients - the electron density, its gradient, and Laplacian - used to construct orbital-free models of it, for the AE6 test set of molecules. These are compared to related quantities used in metaGGA's, to characterize two important limits - the gradient expansion and the localized-electron limit typified by the covalent bond. We find the second-order gradient expansion of the KED to be a surprisingly successful predictor of the exact KED, particularly at low densities where this approximation fails for exchange. This contradicts the conjointness conjecture that the optimal enhancement factors for orbital-free kinetic and exchange energy functionals are closely similar in form. In addition we find significant problems with a recent metaGGA-level orbital-free KED, especially for regions of strong electron localization. We define an orbital-free description of electron localization and a revised metaGGA that improves upon atomization energies significantly. (C) 2016 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available