4.7 Article

Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 145, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4960434

Keywords

-

Funding

  1. PRACE-3IP project [FP7 RI-312763]
  2. European Research Council
  3. Carnegie Institution for Science

Ask authors/readers for more resources

We studied the low-pressure (0-10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2(1)/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2(1)/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 +/- 0.5 kJ/mol for crystalline benzene lattice energy. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available