4.5 Article

Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel

Journal

JOURNAL OF BIOMECHANICS
Volume 49, Issue 13, Pages 2677-2683

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2016.05.035

Keywords

Bioresorbable scaffold; Stent crimping; Stent deployment; Stresses; Eccentric plaque

Ask authors/readers for more resources

Crimping and deployment of bioresorbable polymeric scaffold, Absorb, were modelled using a finite element method, in direct comparison with Co-Cr alloy drug eluting stent, Xience V. Absorb scaffold has an expansion rate lower than Xience V stent, with a less outer diameter achieved after balloon deflation. Due to the difference in design and material properties, Absorb also shows a higher recoiling than Xience V, which suggests that additional post-dilatation is required to achieve effective treatment for patients with calcified plaques and stiff vessels. However, Absorb scaffold induces significantly lower stresses on the artery-plaque system, which can be clinically beneficial. Eccentric plaque causes complications to stent deployment, especially non-uniform vessel expansion. Also the stress levels in the media and adventitia layers are considerably higher for the plaque with high eccentricity, for which the choice of stents, in terms of materials and designs, will be of paramount importance. Our results imply that the benefits of Absorb scaffolds are amplified in these cases. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available