4.6 Article

PdII on Guanidine-Functionalized Fe3O4 Nanoparticles as an Efficient Heterogeneous Catalyst for Suzuki-Miyaura Cross-Coupling and Reduction of Nitroarenes in Aqueous Media

Journal

ACS OMEGA
Volume 6, Issue 50, Pages 34416-34428

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.1c04528

Keywords

-

Funding

  1. Department of Science and Technology (DST), Ministry of Science and Technology, Government of India [DST/INSPIRE/03/2015/003933, IF160537]

Ask authors/readers for more resources

This study focused on the guanidine-functionalized Fe3O4 magnetic nanoparticle-supported palladium (II) (Fe3O4@Guanidine-Pd) catalyst for Suzuki-Miyaura cross-coupling and selective reduction of nitroarenes. The catalyst showed efficient catalytic performance, easy separation and recycling, making it a promising candidate for organic transformations.
This paper presents guanidine-functionalized Fe3O4 magnetic nanoparticle-supported palladium (II) (Fe3O4@Guanidine-Pd) as an effective catalyst for Suzuki-Miyaura cross-coupling of aryl halides using phenylboronic acids and also for selective reduction of nitroarenes to their corresponding amines. Fe3O4@Guanidine-Pd synthesized is well characterized using FT-IR spectroscopy, XRD, SEM, TEM, EDX, thermal gravimetric analysis, XPS, inductively coupled plasma-optical emission spectroscopy, and vibrating sample magnetometry analysis. The prepared Fe3O4@Guanidine-Pd showed effective catalytic performance in the Suzuki-Miyaura coupling reactions by converting aryl halides to their corresponding biaryl derivatives in an aqueous environment in a shorter reaction time and with a meagerly small amount of catalyst (0.22 mol %). Also, the prepared Fe3O4@Guanidine-Pd effectively reduced nitroarenes to their corresponding amino derivatives in aqueous media at room temperature with a high turnover number and turnover frequency with the least amount of catalyst (0.13 mol %). The most prominent feature of Fe3O4@Guanidine-Pd as a catalyst is the ease of separation of the catalyst from the reaction mixture after the reaction with the help of an external magnet with good recovery yield and also reuse of the recovered catalyst for a few cycles without significant loss in its catalytic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available