4.7 Article

Methylation recognition protein YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) regulates the proliferation, migration and invasion of osteosarcoma by regulating m6A level of CCR4-NOT transcription complex subunit 7 (CNOT7)

Journal

BIOENGINEERED
Volume 13, Issue 3, Pages 5236-5250

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/21655979.2022.2037381

Keywords

Osteosarcoma; YTH N6-methyladenosine RNA binding protein 1 (YTHDF1); CCR4-NOT transcription complex subunit 7 (CNOT7); methylated modification; malignant progression

Ask authors/readers for more resources

This study aimed to investigate the role and mechanism of m6A recognition protein YTHDF1 in osteosarcoma (OS). The results showed that YTHDF1 expression level was closely associated with poor prognosis in OS patients, and inhibition of YTHDF1 suppressed OS cell proliferation, migration, and invasion. Additionally, YTHDF1 might regulate CNOT7 expression through m6A modification.
N6-methyladenosine (m6A) is one of the most significant modifications in human mRNAs. Emerging evidence indicates that m6A participates in the initiation and development of malignant tumors. Nevertheless, the biological roles and mechanism of m6A in osteosarcoma (OS) remain unclear. The purpose of this study was to investigate the role and mechanism of the methylation recognition protein-YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in OS. The YTHDF1 expression in OS was detected by qRT-PCR and Western blot assay. M6A quantification was utilized to measure the methylation level of OS. Cell counting kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU) assay and transwell experiments were conducted to confirm the biological effects of YTHDF1 on OS cells. The bioinformatics websites and in vitro assays were conducted to analyze the downstream targets of YTHDF1 was upregulated in OS tissues at mRNA and protein level. The results showed that the expression level of YTHDF1 might be closely associated with the poor prognosis for OS patients. Inhibition of YTHDF1 could suppress the proliferation, migration and invasion of the OS cells. Moreover, we found that CCR4-NOT transcription complex subunit 7 (CNOT7) might be the potential target of YTHDF1, which was upregulated in OS tissues. YTHDF1 could recognize the m6A sites of CONT7 and promote its expression in an m6A manner. Moreover, methyltransferase-like 3 (METTL3) could promote the m6A level of CONT7. YTHDF1 was upregulated in OS and could promote cell proliferation, migration and invasion. The METTL3-CONT7-YTHDF1 regulatory axis might be the potential target for the prognosis and therapy of OS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available