4.8 Article

Hardware-Efficient Microwave-Activated Tunable Coupling between Superconducting Qubits

Journal

PHYSICAL REVIEW LETTERS
Volume 127, Issue 20, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.200502

Keywords

-

Funding

  1. U.S. Army Research Laboratory
  2. U.S. Army Research Office [W911NF-17-S-0008]
  3. National Defense Science & Engineering Graduate (NDSEG) Fellowship

Ask authors/readers for more resources

In this study, a tunable ZZ interaction between two fixed-frequency and fixed-coupling transmon qubits is achieved, with adjustable coupling range larger than static coupling and changeable sign of interaction. This interaction is suitable for large quantum processors, with flexible drive frequency choice and resilience to microwave cross talk, enabling the implementation of a controlled phase (CZ) gate with high fidelity.
Generating high-fidelity, tunable entanglement between qubits is crucial for realizing gate-based quantum computation. In superconducting circuits, tunable interactions are often implemented using flux tunable qubits or coupling elements, adding control complexity and noise sources. Here, we realize a tunable ZZ interaction between two transmon qubits with fixed frequencies and fixed coupling, induced by driving both transmons off resonantly. We show tunable coupling over 1 order of magnitude larger than the static coupling, and change the sign of the interaction, enabling cancellation of the idle coupling. Further, this interaction is amenable to large quantum processors: the drive frequency can be flexibly chosen to avoid spurious transitions, and because both transmons are driven, it is resilient to microwave cross talk. We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of 99.43(1)% as measured by cycle benchmarking, and we find the fidelity is limited by incoherent errors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Multidisciplinary

Qutrit Randomized Benchmarking

A. Morvan, V. V. Ramasesh, M. S. Blok, J. M. Kreikebaum, K. O'Brien, L. Chen, B. K. Mitchell, R. K. Naik, D. Santiago, I Siddiqi

Summary: The study demonstrates extensions of industry standard randomized benchmarking (RB) protocols for ternary quantum logic, allowing for the evaluation of performance. Testing using a superconducting five-level processor revealed the average infidelity of a single-qutrit process, characterizing relevant gates through interleaved RB, and evaluating a two-qutrit gate using cycle benchmarking.

PHYSICAL REVIEW LETTERS (2021)

Article Physics, Multidisciplinary

Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor

Akel Hashim, Ravi K. Naik, Alexis Morvan, Jean-Loup Ville, Bradley Mitchell, John Mark Kreikebaum, Marc Davis, Ethan Smith, Costin Iancu, Kevin P. O'Brien, Ian Hincks, Joel J. Wallman, Joseph Emerson, Irfan Siddiqi

Summary: The successful implementation of algorithms on quantum processors requires accurate control of quantum bits, but coherent errors can severely limit performance. Randomized compiling can convert coherent errors into stochastic noise, reducing unpredictable errors and enabling accurate prediction of algorithmic performance. This approach demonstrates significant performance gains and accurately predicts algorithm performance on modern-day noisy quantum processors, paving the way for scalable quantum computing.

PHYSICAL REVIEW X (2021)

Correction Physics, Multidisciplinary

High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits (May, 10.1038/s41567-022-01590-3, 2022)

Yosep Kim, Alexis Morvan, Long B. Nguyen, Ravi K. Naik, Christian Junger, Larry Chen, John Mark Kreikebaum, David I. Santiago, Irfan Siddiqi

NATURE PHYSICS (2022)

Article Physics, Multidisciplinary

High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits

Yosep Kim, Alexis Morvan, Long B. Nguyen, Ravi K. Naik, Christian Junger, Larry Chen, John Mark Kreikebaum, David Santiago, Irfan Siddiqi

Summary: The development of noisy intermediate-scale quantum devices has brought about a wider range of executable high-fidelity single- and two-qubit gates. In this study, a high-fidelity iToffoli gate based on two-qubit interactions is demonstrated using fixed-frequency superconducting qubits. The gate implementation process achieves a fidelity of up to 98.26(2)%. Numerical simulations also show that the gate scheme used can produce more efficient three-qubit gates than the traditional Toffoli and iToffoli gates. This work not only introduces a high-fidelity iToffoli gate to current superconducting quantum processors, but also paves the way for developing multi-qubit gates based on two-qubit interactions.

NATURE PHYSICS (2022)

Article Physics, Multidisciplinary

Multimode photon blockade

Srivatsan Chakram, Kevin He, Akash Dixit, Andrew E. Oriani, Ravi K. Naik, Nelson Leung, Hyeokshin Kwon, Wen-Long Ma, Liang Jiang, David Schuster

Summary: Interactions play a crucial role in generating correlated quantum many-body states and are important for various physics phenomena. A new scheme has been implemented to create high-order interactions between photons stored in multiple electromagnetic modes of a microwave cavity. This method allows for the preparation of single-mode Fock states and multimode W states.

NATURE PHYSICS (2022)

Article Physics, Multidisciplinary

Monitoring Fast Superconducting Qubit Dynamics Using a Neural Network

G. Koolstra, N. Stevenson, S. Barzili, L. Burns, K. Siva, S. Greenfield, W. Livingston, A. Hashim, R. K. Naik, J. M. Kreikebaum, K. P. O'Brien, D. Santiago, J. Dressel, I Siddiqi

Summary: In this study, we propose an alternative method to accurately track the trajectories of rapidly driven superconducting qubits using a long short-term memory (LSTM) artificial neural network with minimal prior information. The LSTM produces trajectories that include qubit-readout resonator correlations and can accurately reconstruct the evolution of an unknown drive.

PHYSICAL REVIEW X (2022)

Article Physics, Applied

Effects of laser-annealing on fixed-frequency superconducting qubits

Hyunseong Kim, Christian Junger, Alexis Morvan, Edward S. Barnard, William P. Livingston, M. Virginia P. Altoe, Yosep Kim, Chengyu Song, Larry Chen, John Mark Kreikebaum, D. Frank Ogletree, David I. Santiago, Irfan Siddiqi

Summary: As superconducting quantum processors become more complex, it is necessary to develop techniques to overcome frequency crowding constraints. Laser-annealing, a recently developed method, offers an effective post-fabrication approach to adjust the frequency of superconducting qubits. This study presents an automated laser-annealing apparatus based on conventional microscopy components and demonstrates the preservation of highly coherent transmons. The researchers also investigate the change in defect features, particularly two-level system defects, after laser-annealing using noise spectroscopy.

APPLIED PHYSICS LETTERS (2022)

Article Multidisciplinary Sciences

Formation of robust bound states of interacting microwave photons

A. Morvan, T. I. Andersen, X. Mi, C. Neill, A. Petukhov, K. Kechedzhi, D. A. Abanin, A. Michailidis, R. Acharya, F. Arute, K. Arya, A. Asfaw, J. Atalaya, J. C. Bardin, J. Basso, A. Bengtsson, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, Z. Chen, B. Chiaro, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy, A. Del Toro Barba, S. Demura, A. Dunsworth, D. Eppens, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, L. Flores Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, A. Grajales Dau, J. A. Gross, S. Habegger, M. C. Hamilton, M. P. Harrigan, S. D. Harrington, M. Hoffmann, S. Hong, T. Huang, A. Huff, W. J. Huggins, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, T. Khattar, M. Khezri, M. Kieferova, S. Kim, A. Y. Kitaev, P. V. Klimov, A. R. Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K. -m. Lau, L. Laws, J. Lee, K. W. Lee, B. J. Lester, A. T. Lill, W. Liu, A. Locharla, F. Malone, O. Martin, J. R. McClean, M. McEwen, B. Meurer Costa, K. C. Miao, M. Mohseni, S. Montazeri, E. Mount, W. Mruczkiewicz, O. Naaman, M. Neeley, A. Nersisyan, M. Newman, A. Nguyen, M. Nguyen, M. Y. Niu, T. E. O'Brien, R. Olenewa, A. Opremcak, R. Potter, C. Quintana, N. C. Rubin, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, V. Shvarts, J. Skruzny, W. C. Smith, D. Strain, G. Sterling, Y. Su, M. Szalay, A. Torres, G. Vidal, B. Villalonga, C. Vollgraff-Heidweiller, T. White, C. Xing, Z. Yao, P. Yeh, J. Yoo, A. Zalcman, Y. Zhang, N. Zhu, H. Neven, D. Bacon, J. Hilton, E. Lucero, R. Babbush, S. Boixo, A. Megrant, J. Kelly, Y. Chen, V. Smelyanskiy, I. Aleiner, L. B. Ioffe, P. Roushan

Summary: Systems of correlated particles present computational challenges when interactions become comparable to other energy scales, and our understanding of these systems fades as the particle number or interaction strength increases. This study provides experimental evidence for the existence and stability of bound states of interacting photons beyond the integrability limit, shedding light on the impact of integrability on bound states.

NATURE (2022)

Article Multidisciplinary Sciences

Non-Abelian braiding of graph vertices in a superconducting processor

T. I. Andersen, Y. D. Lensky, K. Kechedzhi, I. K. Drozdov, A. Bengtsson, S. Hong, A. Morvan, X. Mi, A. Opremcak, R. Acharya, R. Allen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, R. Babbush, D. Bacon, J. C. Bardin, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, Z. Chen, B. Chiaro, D. Chik, C. Chou, J. Cogan, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy, A. Del Toro Barba, S. Demura, A. Dunsworth, D. Eppens, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, V. S. Ferreira, L. F. Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, R. Gosula, A. G. Dau, J. A. Gross, S. Habegger, M. C. Hamilton, M. Hansen, M. P. Harrigan, S. D. Harrington, P. Heu, J. Hilton, M. R. Hoffmann, T. Huang, A. Huff, W. J. Huggins, L. B. Ioffe, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, T. Khattar, M. Khezri, M. Kieferova, S. Kim, A. Kitaev, P. V. Klimov, A. R. Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K. -M. Lau, L. Laws, J. Lee, K. W. Lee, B. J. Lester, A. T. Lill, W. Liu, A. Locharla, E. Lucero, F. D. Malone, O. Martin, J. R. McClean, T. McCourt, M. McEwen, K. C. Miao, A. Mieszala, M. Mohseni, S. Montazeri, E. Mount, R. Movassagh, W. Mruczkiewicz, O. Naaman, M. Neeley, C. Neill, A. Nersisyan, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, T. E. O'Brien, S. Omonije, A. Petukhov, R. Potter, L. P. Pryadko, C. Quintana, C. Rocque, N. C. Rubin, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, N. Shutty, V. Shvarts, J. Skruzny, W. C. Smith, R. Somma, G. Sterling, D. Strain, M. Szalay, A. Torres, G. Vidal, B. Villalonga, C. V. Heidweiller, T. White, B. W. K. Woo, C. Xing, Z. J. Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang, N. Zhu, N. Zobrist, H. Neven, S. Boixo, A. Megrant, J. Kelly, Y. Chen, V. Smelyanskiy, E. -A. Kim, I. Aleiner, P. Roushan

Summary: Indistinguishability of particles is a fundamental principle in quantum mechanics. While braiding of Abelian anyons leaves the system unchanged, braiding of non-Abelian anyons can change the observables of the system without violating the principle of indistinguishability. Experimental observation of non-Abelian anyons' exchange statistics has remained elusive, but using quantum processors, it is now possible to manipulate and braid them, allowing for the verification of their fusion rules and statistics. This work provides insights into non-Abelian braiding and its potential application in fault-tolerant quantum computing with the inclusion of error correction.

NATURE (2023)

Article Quantum Science & Technology

Benchmarking quantum logic operations relative to thresholds for fault tolerance

Akel Hashim, Stefan Seritan, Timothy Proctor, Kenneth Rudinger, Noah Goss, Ravi K. Naik, John Mark Kreikebaum, David I. Santiago, Irfan Siddiqi

Summary: It is found that under randomized compiling (RC), the errors of quantum gates can be accurately described by a stochastic Pauli noise model without coherent errors, and spatially correlated coherent errors and non-Markovian errors are strongly suppressed. The average and worst-case error rates are equal for randomly compiled gates, and the maximum worst-case error for the gate set is measured to be 0.0197(3) using gate set tomography.

NPJ QUANTUM INFORMATION (2023)

Article Physics, Multidisciplinary

Optimizing frequency allocation for fixed-frequency superconducting quantum processors

Alexis Morvan, Larry Chen, Jeffrey M. Larson, David Santiago, Irfan Siddiqi

Summary: This paper proposes a mixed-integer-programming-based optimization approach to determine qubit frequencies for maximizing the fabrication yield of quantum processors. By studying traditional qubit and qutrit architectures, as well as cross-resonance interaction processors, and comparing them to a differential ac-Stark shift based on entanglement gates, the approach greatly improves the fabrication yield and scalability of these devices.

PHYSICAL REVIEW RESEARCH (2022)

Article Physics, Multidisciplinary

Bulk properties of honeycomb lattices of superconducting microwave resonators

Alexis Morvan, Mathieu Fechant, Gianluca Aiello, Julien Gabelli, Jerome Esteve

Summary: This study designs various honeycomb lattices for microwave photons in the 4 to 8 GHz band using superconducting spiral resonators. The eigenmodes of these photonic lattices are imaged using a scanning laser technique, and their measured bands are in excellent agreement with theoretical models.

PHYSICAL REVIEW RESEARCH (2022)

Article Quantum Science & Technology

Experimental Characterization of Crosstalk Errors with Simultaneous Gate Set Tomography

Kenneth Rudinger, Craig W. Hogle, Ravi K. Naik, Akel Hashim, Daniel Lobser, David Santiago, Matthew D. Grace, Erik Nielsen, Timothy Proctor, Stefan Seritan, Susan M. Clark, Robin Blume-Kohout, Irfan Siddiqi, Kevin C. Young

Summary: Crosstalk is a major source of failure in multiqubit quantum information processors, which can be caused by various physical phenomena and introduce subtle correlations in device errors. Gate set tomography protocol can be used to identify and characterize crosstalk errors in quantum information processors.

PRX QUANTUM (2021)

No Data Available