4.7 Article

Catalytic pyrolysis of biomass impregnated with elements from steelmaking slag leaching and simultaneous fabrication of phosphorus adsorbent

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 328, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.129490

Keywords

Steelmaking slag; Acid leaching; Biomass catalytic pyrolysis; Calcium-based catalyst; Bio-oil upgrading; Phosphorus adsorbent

Ask authors/readers for more resources

This study proposed a novel strategy for reusing steelmaking slag to treat biomass and produce valuable products. The slag elements acted as catalysts for upgrading the bio-oil quality and as an adsorbent for phosphorus removal from wastewater. X-ray powder diffraction analysis showed the presence of nano-size calcite particles on the products from different pyrolysis temperatures.
Energy shortage and environmental pollution are global concerns for sustainable development, which can be improved by high value-added reuse of solid wastes. In this study, a novel strategy was proposed for reusing steelmaking slag to treat biomass and produce valuable products. The study consisted of: i) useful elements (mainly Ca and Fe) were extracted from steelmaking slag through leaching then doped onto pine as catalysts for biomass pyrolysis; and ii) the produced slag elements (SE)@char was employed as adsorbent for P removal from wastewater. Results showed that compared to raw pine, SE@pine released more CO2 and CO due to the decomposition of formed calcium citrate on particles and the reaction of carbon with CO2. In the bio-oil product from SE@pine, under the assistance of slag elements, the selectivity of total phenolic compounds dropped by half with the nitrogenous and acid groups showing the same descending trend, while the selectivity of alcohols and ketones increased. The slag elements, especially Ca and Fe, acted as catalysts for upgrading the bio-oil quality through enhancing the dehydration and dehydroxylation reactions. X-ray powder diffraction analysis indicated the presence of nano-size calcite particles on SE@char products from different pyrolysis temperatures. The SE@char from pyrolysis at 750 degrees C was attempted as adsorbent for phosphorus removal from aqueous solution. A phosphate adsorption capacity of 109 mg/g adsorbent was identified at the investigated conditions. The adsorption kinetics could be best described by the Elovich model, indicating the chemical reaction nature of the adsorption. This study explored the use of steelmaking slag and biomass wastes in a novel way for simultaneous production of upgraded biofuels and adsorbent for phosphorus control in wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available