4.8 Article

Embedded Distributed Temperature Sensing Enabled Multistate Joint Observation of Smart Lithium-Ion Battery

Journal

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume 70, Issue 1, Pages 555-565

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2022.3146503

Keywords

Temperature measurement; Temperature sensors; Batteries; Heating systems; Optical fiber sensors; Optical fibers; Monitoring; Distributed temperature measurement; embedded sensor; heat generation rate; optical fiber sensor; smart battery

Ask authors/readers for more resources

This article proposes a thermal-model-based method for multistate joint observation in lithium-ion battery management. By embedding distributed temperature sensors, a novel smart battery design enables real-time monitoring of internal and surface temperatures, as well as state parameters with high space resolution.
Accurate monitoring of the internal statuses is highly valuable for the management of the lithium-ion battery (LIB). This article proposes a thermal-model-based method for multistate joint observation, enabled by a novel smart battery design with an embedded and distributed temperature sensor. In particular, a novel smart battery is designed by implanting the distributed fiber optical sensor internally and externally. This promises a real-time distributed measurement of LIB internal and surface temperature with a high space resolution. Following this endeavor, a low-order joint observer is proposed to coestimate the thermal parameters, heat generation rate, state of charge, and maximum capacity. Experimental results disclose that the smart battery has space-resolved self-monitoring capability with high reproducibility. With the new sensing data, the heat generation rate, state of charge, and maximum capacity of LIB can be observed precisely in real time. The proposed method validates to outperform the commonly-used electrical-model-based method regarding the accuracy and the robustness to battery aging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available