4.7 Article

Analyzing fusion of regularization techniques in the deep learning-based intrusion detection system

Journal

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS
Volume 36, Issue 12, Pages 7340-7388

Publisher

WILEY-HINDAWI
DOI: 10.1002/int.22590

Keywords

CNN; deep learning; deep neural network; dropout; fusion; GRU; intrusion detection system; LSTM; machine learning; regularization; RNN

Ask authors/readers for more resources

This paper examines the fusion of various regularization techniques with dropout regularization for analyzing and enhancing the performance of DNN-based IDS. The experimental results demonstrate that the fusion of dropout with other regularization techniques outperforms individual L1, L2, and elastic net regularization techniques.
The surge of constantly evolving network attacks can be addressed by designing an effective and efficient Intrusion Detection System (IDS). Various Deep Learning (DL) techniques have been used for designing intelligent IDS. However, DL techniques face an issue of overfitting because of complex network structure and high-dimensional data sets. Dropout and regularization are two competently perceived concepts of DL used for handling overfitting issue to enhance the performance of DL techniques. In this paper, we aim to apply fusion of various regularization techniques, namely, L1, L2, and elastic net regularization, with dropout regularization technique, for analyzing and enhancing the performance of Deep Neural Network (DNN)-based IDS. Experiments are performed using NSL-KDD, UNSW_NB-15, and CIC-IDS-2017 data sets. The value of dropout probability is derived using GridSearchCV-based hyperparameter optimization technique. Moreover, the paper also implements state-of-the-art Machine Learning techniques for the performance comparison. Apart from DNN, we have also presented performance analysis of various DL techniques, namely, Recurrent Neural Network, Long Short-Term Memory, Gated Recurrent Unit, and Convolutional Neural Network using a fusion of regularization techniques for intrusion detection and classification. The empirical study shows that among the techniques implemented, dropout has proved to be more effective compared with L1, L2, and elastic net regularization. Moreover, fusion of dropout with other regularization techniques achieved better results compared with L1 regularization, L2 regularization, and elastic net regularization, individually. The techniques implemented for DNN-based IDS are also statistically tested using the Wilcoxon signed-rank test.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available