4.5 Article

Kinetics of liquid-phase diphenylacetylene hydrogenation on ?single-atom alloy? Pd-Ag catalyst: Experimental study and kinetic analysis

Journal

MOLECULAR CATALYSIS
Volume 506, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mcat.2021.111550

Keywords

Diphenylacetylene; Hydrogenation; Single-atom catalysis; Selectivity; Kinetics

Funding

  1. Russian Science Foundation [19-13-00285]
  2. Russian Science Foundation [19-13-00285] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

The study showed that Pd1Ag3/Al2O3 single-atom alloy catalyst exhibits excellent selectivity in the liquid-phase hydrogenation of DPA, which is not influenced by hydrogen pressure or DPA concentration.
Catalytic performance of Pd1Ag3/Al2O3 single-atom alloy (SAA) catalyst was studied in liquid-phase hydrogenation of diphenylacetylene (DPA) and compared with the performance of the reference monometallic Pd/Al2O3. Formation of SAA structure in Pd1Ag3/Al2O3 was confirmed by FTIR CO technique. It was found that Pd1Ag3/ Al2O3 single-atom alloy catalyst exhibits excellent selectivity in diphenylethene (stilbene) (ca. 98 %), which remains constant over a wide range of DPA conversions (0?95%), while over Pd/Al2O3 selectivity decreases steadily with the increase in DPA conversion. It is remarkable that the selectivity of Pd1Ag3/Al2O3 depends neither on hydrogen pressure (5?15 bar), nor on DPA concentration (0.0262 ? 0.159 mol/l). In contrast, over the reference Pd/Al2O3 selectivity tends to decrease with increasing P(H2) and decreasing DPA concentration. The proposed reaction network comprises hydrogenation of DPA in a parallel formation of cis and trans-stilbene with following hydrogenation to bibenzyl and direct formation of the latter from the initial DPA. The calculations clearly shows the capability of the kinetic model to describe the experimental dependencies for Pd1Ag3 single-atom catalyst in an excellent way with the degree of explanation equal to ca. 99 %.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available