4.8 Article

Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase

Journal

WATER RESEARCH
Volume 189, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116580

Keywords

Disinfection; Ferrate; Monochloramine; RNA-seq; Transcriptomics; VBNC

Funding

  1. Department of Interior, Bureau of Reclamation [R17AC00133]

Ask authors/readers for more resources

Disinfection mechanisms vary by disinfectant, with monochloramine potentially inducing viable but non-culturable state through reduced protein synthesis and metabolism, while ferrate does not have this effect. Both disinfectants upregulate oxidative stress response genes, with monochloramine showing slower disinfection kinetics compared to ferrate.
Biological mechanisms of disinfection not only vary by disinfectant but also remain not well understood. We investigated the physiological and transcriptomic response of Escherichia coli at late stationary phase to ferrate and monochloramine in amended lake water. Although ferrate and monochloramine treatments similarly reduced culturable cell concentrations by 3-log(10), 64% and 11% of treated cells were viable following monochloramine and ferrate treatment, respectively. This observed induction of viable but non-culturable (VBNC) state following monochloramine treatment but not ferrate is attributed to slower monochloramine disinfection kinetics (by 2.8 times) compared to ferrate. Transcriptomic analysis of E. coli at 15 min of exposure revealed that 3 times as many genes related to translation and transcription were downregulated by monochloramine compared to ferrate, suggesting that monochloramine treatment may be inducing VBNC through reduced protein synthesis and metabolism. Downregulation of universal stress response genes (rpoS, uspA) was attributed to growth-related physiological stressors during late stationary phase which may have contributed to the elevated expression levels of general stress responses pre-disinfection and, subsequently, their significant downregulation post-disinfection. Both disinfectants upregulated oxidative stress response genes (trxC, grxA, soxS), although levels of upregulation were time sensitive. This work shows that bacterial inactivation responses to disinfectants is mediated by complex molecular and growth-related responses. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available