4.3 Article

Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury

Journal

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY
Volume 2021, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2021/5816837

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [82071397]
  2. Youth Foundation of the National Natural Science Foundation of China [81801230]

Ask authors/readers for more resources

The study demonstrates that traumatic brain injury alters gut microbiota, while fecal microbiota transplantation can restore dysbiosis and alleviate neurological deficits possibly through the TMA-TMAO-MsrA signaling pathway.
Background. Traumatic brain injury (TBI) can induce persistent fluctuation in the gut microbiota makeup and abundance. The present study is aimed at determining whether fecal microbiota transplantation (FMT) can rescue microbiota changes and ameliorate neurological deficits after TBI in rats. Methods. A controlled cortical impact (CCI) model was used to simulate TBI in male Sprague-Dawley rats, and FMT was performed for 7 consecutive days. 16S ribosomal RNA (rRNA) sequencing of fecal samples was performed to analyze the effects of FMT on gut microbiota. Modified neurological severity score and Morris water maze were used to evaluate neurobehavioral functions. Metabolomics was used to screen differential metabolites from the rat serum and ipsilateral brains. The oxidative stress indices were measured in the brain. Results. TBI induced significance changes in the gut microbiome, including the alpha- and beta-bacterial diversity, as well as the microbiome composition at 8 days after TBI. On the other hand, FMT could rescue these changes and relieve neurological deficits after TBI. Metabolomics results showed that the level of trimethylamine (TMA) in feces and the level of trimethylamine N-oxide (TMAO) in the ipsilateral brain and serum was increased after TBI, while FMT decreased TMA levels in the feces, and TMAO levels in the ipsilateral brain and serum. Antioxidant enzyme methionine sulfoxide reductase A (MsrA) in the ipsilateral hippocampus was decreased after TBI but increased after FMT. In addition, FMT elevated SOD and CAT activities and GSH/GSSG ratio and diminished ROS, GSSG, and MDA levels in the ipsilateral hippocampus after TBI. Conclusions. FMT can restore gut microbiota dysbiosis and relieve neurological deficits possibly through the TMA-TMAO-MsrA signaling pathway after TBI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available