4.7 Article

Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis

Journal

EMBO REPORTS
Volume 17, Issue 12, Pages 1890-1900

Publisher

WILEY
DOI: 10.15252/embr.201643393

Keywords

cysteine; magnesium; phosphatase; phosphorylation; X-ray crystallography

Funding

  1. Japan Society for the Promotion of Science (KAKENHI) [26460364, 26291042, 26111007, 16K14723]
  2. Canadian Institutes of Health Research [MOP-14219]
  3. Grants-in-Aid for Scientific Research [26111007, 26291042, 16K14723] Funding Source: KAKEN

Ask authors/readers for more resources

PRLs are frequently overexpressed in human cancers and are prognostic markers of poor survival. Despite their potential as therapeutic targets, their mechanism of action is not understood in part due to their weak enzymatic activity. Previous studies revealed that PRLs interact with CNNM ion transporters and prevent CNNM4-dependent Mg2+ transport, which is important for energy metabolism and tumor progression. Here, we report that PRL-CNNM complex formation is regulated by the formation of phosphocysteine. We show that cysteine in the PRL catalytic site is endogenously phosphorylated as part of the catalytic cycle and that phosphocysteine levels change in response to Mg2+ levels. Phosphorylation blocks PRL binding to CNNM Mg2+ transporters, and mutations that block the PRL-CNNM interaction prevent regulation of Mg2+ efflux in cultured cells. The crystal structure of the complex of PRL2 and the CBS-pair domain of the Mg2+ transporter CNNM3 reveals the molecular basis for the interaction. The identification of phosphocysteine as a regulatory modification opens new perspectives for signaling by protein phosphatases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available