4.7 Article

Deep phylogeny of cancer drivers and compensatory mutations

Journal

COMMUNICATIONS BIOLOGY
Volume 3, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s42003-020-01276-7

Keywords

-

Funding

  1. Intramural Research Program of National Institutes of Health of the USA (National Library of Medicine)

Ask authors/readers for more resources

Rochman et al. present deep phylogenies for 84 cancer driver genes and examine the prevalence of driver mutations across gene-species trees. Their results show that driver mutations are rare in species evolution and give insight into the evolution of driver mutations and oncogenes. Driver mutations (DM) are the genetic impetus for most cancers. The DM are assumed to be deleterious in species evolution, being eliminated by purifying selection unless compensated by other mutations. We present deep phylogenies for 84 cancer driver genes and investigate the prevalence of 434 DM across gene-species trees. The DM are rare in species evolution, and 181 are completely absent, validating their negative fitness effect. The DM are more common in unicellular than in multicellular eukaryotes, suggesting a link between these mutations and cell proliferation control. 18 DM appear as the ancestral state in one or more major clades, including 3 among mammals. We identify within-gene, compensatory mutations for 98 DM and infer likely interactions between the DM and compensatory sites in protein structures. These findings elucidate the evolutionary status of DM and are expected to advance the understanding of the functions and evolution of oncogenes and tumor suppressors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available