4.4 Article

Protective effects of DPP-4 inhibitor on podocyte injury in glomerular diseases

Journal

BMC NEPHROLOGY
Volume 21, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12882-020-02060-9

Keywords

DPP-4; Podocyte; Glomerular disease; Synaptopodin; Saxagliptin

Funding

  1. JSPS KAKENHI [18 K16008]

Ask authors/readers for more resources

BackgroundDipeptidyl peptidase-4 (DPP-4) is a serine protease that inhibits the degradation of glucagon-like peptide 1. DPP-4 inhibitors are used worldwide to treat type 2 diabetes mellitus and were recently shown to have pleiotropic effects such as anti-oxidant, anti-inflammatory, and anti-fibrotic actions. DPP-4 inhibitors improve albuminuria and renal injury including glomerular damage independent of its hypoglycemic effect. Although DPP-4 is mainly expressed in the kidney, the physiological function of DPP-4 remains unclear.MethodsThe localization of renal DPP-4 activity was determined in human renal biopsy specimens with glycyl-1-prolyl-4-methoxy-2-naphthylamide and the effects of a DPP-4 inhibitor were examined in human cultured podocyte.ResultsDPP-4 activity under normal conditions was observed in some Bowman's capsular epithelial cells and proximal tubules, but not in the glomerulus. DPP-4 activity was observed in crescent formation in anti-neutrophil myeloperoxidase cytoplasmic antigen antibody nephritis, nodular lesions in diabetic nephropathy, and some podocytes in focal segmental glomerulosclerosis. Notably, the DPP-4 inhibitor saxagliptin suppressed DPP-4 activity in podocytes and the proximal tubules. To assess the effect of DPP-4 inhibitor on podocytes, human cultured podocytes were injured by Adriamycin, which increased DPP-4 activity; this activity was dose-dependently suppressed by saxagliptin. Treatment with saxagliptin maintained the structure of synaptopodin and RhoA. Saxagliptin also improved the detachment of podocytes.ConclusionsDPP-4 activity induces degradation of synaptopodin and reduction of RhoA, resulting in destruction of the podocyte cytoskeleton. Saxagliptin may have pleiotropic effects to prevent podocyte injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available