4.8 Article

Formation and enhanced photodegradation of chlorinated derivatives of bisphenol A in wastewater treatment plant effluent

Journal

WATER RESEARCH
Volume 184, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116002

Keywords

Wastewater effluent; Chlorination; Bisphenol A; Photodegradation; Effluent organic matter; Estrogenic activity

Funding

  1. National Natural Science Foundation of China [21876056, 21677054, 21377043]
  2. China Postdoctoral Science Foundation [2018M630865]

Ask authors/readers for more resources

There are many reports on the detection and removal of emerging pollutants in the wastewater effluents, while the fate of their chlorinated derivatives generated during chlorination is not well understood. Here we investigated the photodegradation of chlorinated derivatives of bisphenol A (CDBPAs), mainly including 3-chlorobisphenol A, 3,3'-dichlorobisphenol A, 3,5-dichlorobisphenol A, 3,3',5-trichlorobisphenol A, and 3,3',5,5'-tetrachlorobisphenol A, under simulated sunlight. Distinct from BPA, CDBPAs underwent rapid direct photodegradation due to a pronounced bathochromic shift of UV absorption. The photodegradation of CDBPAs was significantly enhanced by effluent organic matter (EfOM) from the wastewater effluent. A series of quenching experiments and laser flash photolysis analysis verified the contribution of triplet states of EfOM ((3)EfOM*) for the indirect photodegradation of CDBPAs with rate constant of similar to 10(9) M-1 s(-1). Both direct and EfOM-induced indirect photodegradation of CDBPAs increased with a higher degree of chlorination. Furthermore, high-resolution mass spectrometry showed similar photoproducts for direct and indirect photodegradation of CDBPAs, mainly ascribed to the cleavage of C-Cl bond and hydroxylation with further cleavage of the benzene ring. The estrogenic activity of the photoproducts was diminished. These findings suggest that photodegradation is an important pathway for the removal and detoxication of CDBPAs from effluents and receiving natural waters under sunlight. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available