4.7 Review

A Two-Dimensional Affinity Capture and Separation Mini-Platform for the Isolation, Enrichment, and Quantification of Biomarkers and Its Potential Use for Liquid Biopsy

Journal

BIOMEDICINES
Volume 8, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/biomedicines8080255

Keywords

low abundance biomarkers; frequent diagnosis-prognosis testing; circulating cells; extracellular vesicles; exosomes; liquid biopsy; immunoaffinity capillary electrophoresis; molecular biorecognition; non-coding RNAs; point-of-care instrument; proteomics; telemedicine

Ask authors/readers for more resources

Biomarker detection for disease diagnosis, prognosis, and therapeutic response is becoming increasingly reliable and accessible. Particularly, the identification of circulating cell-free chemical and biochemical substances, cellular and subcellular entities, and extracellular vesicles has demonstrated promising applications in understanding the physiologic and pathologic conditions of an individual. Traditionally, tissue biopsy has been the gold standard for the diagnosis of many diseases, especially cancer. More recently, liquid biopsy for biomarker detection has emerged as a non-invasive or minimally invasive and less costly method for diagnosis of both cancerous and non-cancerous diseases, while also offering information on the progression or improvement of disease. Unfortunately, the standardization of analytical methods to isolate and quantify circulating cells and extracellular vesicles, as well as their extracted biochemical constituents, is still cumbersome, time-consuming, and expensive. To address these limitations, we have developed a prototype of a portable, miniaturized instrument that uses immunoaffinity capillary electrophoresis (IACE) to isolate, concentrate, and analyze cell-free biomarkers and/or tissue or cell extracts present in biological fluids. Isolation and concentration of analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. When compared to other existing methods, the process of this affinity capture, enrichment, release, and separation of one or a panel of biomarkers can be carried out on-line with the advantages of being rapid, automated, and cost-effective. Additionally, it has the potential to demonstrate high analytical sensitivity, specificity, and selectivity. As the potential of liquid biopsy grows, so too does the demand for technical advances. In this review, we therefore discuss applications and limitations of liquid biopsy and hope to introduce the idea that our affinity capture-separation device could be used as a form of point-of-care (POC) diagnostic technology to isolate, concentrate, and analyze circulating cells, extracellular vesicles, and viruses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Biochemistry & Molecular Biology

Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression

Norberto A. Guzman, Daniel E. Guzman

Summary: Protein biomarkers, specifically proteoforms, play a crucial role in disease diagnosis and prognosis. Immunoaffinity capillary electrophoresis (IACE) is an emerging diagnostic tool that can isolate and detect proteoform biomarkers from liquid biopsy, offering rapid and accurate results with reliability and reproducibility. Additionally, IACE has the potential to monitor the efficacy of therapeutic agents and improve early detection of medical conditions through advancements in telemedicine and artificial intelligence.

BIOMOLECULES (2021)

No Data Available