4.7 Article

Insight into the Ex Situ Catalytic Pyrolysis of Biomass over Char Supported Metals Catalyst: Syngas Production and Tar Decomposition

Journal

NANOMATERIALS
Volume 10, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/nano10071397

Keywords

ex situ; catalytic pyrolysis; biomass; syngas production; tar decomposition

Funding

  1. National Natural Science Foundation of China, China [21706087]
  2. China Postdoctoral Science Foundation, China [2019T120658, 2018M640703]
  3. National Key Research and Development Project, China [2018YFB1502900]

Ask authors/readers for more resources

Ex situ catalytic pyrolysis of biomass using char-supported nanoparticles metals (Fe and Ni) catalyst for syngas production and tar decomposition was investigated. The characterizations of fresh Fe-Ni/char catalysts were determined by TGA, SEM-EDS, Brunauer-Emmett-Teller (BET), and XPS. The results indicated that nanoparticles metal substances (Fe and Ni) successfully impregnated into the char support and increased the thermal stability of Fe-Ni/char. Fe-Ni/char catalyst exhibited relatively superior catalytic performance, where the syngas yield and the molar ratio of H2/CO were 0.91 Nm3/kg biomass and 1.64, respectively. Moreover, the lowest tar yield (43.21 g/kg biomass) and the highest tar catalytic conversion efficiency (84.97 wt.%) were also obtained under the condition of Ni/char. Ultimate analysis and GC-MS were employed to analyze the characterization of tar, and the results indicated that the percentage of aromatic hydrocarbons appreciably increased with the significantly decrease in oxygenated compounds and nitrogenous compounds, especially in Fe-Ni/char catalyst, when compared with no catalyst pyrolysis. After catalytic pyrolysis, XPS was employed to investigate the surface valence states of the characteristic elements in the catalysts. The results indicated that the metallic oxides (MexOy) were reduced to metallic Me(0)as active sites for tar catalytic pyrolysis. The main reactions pathway involved during ex situ catalytic pyrolysis of biomass based on char-supported catalyst was proposed. These findings indicate that char has the potential to be used as an efficient and low-cost catalyst toward biomass pyrolysis for syngas production and tar decomposition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available