4.7 Article

New implications for the origin of the IAB main group iron meteorites and the isotopic evolution of the noncarbonaceous (NC) reservoir

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 540, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2020.116248

Keywords

IAB main group; Hf-W chronometry; iron meteorites; noncarbonaceous reservoir

Funding

  1. NASA Emerging Worlds grant [NNX16AN07G]
  2. NASA [899361, NNX16AN07G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

The origin of the IAB main group (MG) iron meteorites is explored through consideration of W-182 isotopic compositions, thermal modeling of Al-26 decay, and mass independent (nucleosynthetic) Mo isotopic compositions of planetesimals formed in the noncarbonaceous (NC) protosolar isotopic reservoir. A refined W-182 model age for the meteorites Campo del Cielo, Canyon Diablo, and Nantan suggests that the IAB-MG parent body underwent some form of metal-silicate segregation as early as 5.3 +/- 0.4 Myr after calcium-aluminum rich inclusion (CAI) formation or as late as 13.8 +/- 1.4 Myr after CAI formation. If melting of the IAB-MG occurred prior to 7 Myr after CAI formation, it was likely driven by Al-26 decay for a parent body radius >40 km. Otherwise, additional heat from impact is required for melting metal this late in Solar System history. If melting was partially or wholly the result of internal heating, a thermal model of Al-26 decay heat production constrains the accretion age of the IAB-MG parent body to similar to 1.7 +/- 0.4 Myr after CAI formation. If melting was, instead, dominantly caused by impact heating, thermal modeling suggests the parent body accreted more than 2 Myr after CAI formation. Comparison of Mo mass independent isotopic compositions of the IAB-MG to other NC bodies with constrained accretion ages suggests that the Mo isotopic composition of the NC reservoir changed with time, and that the IAB-MG parent body accreted between 2 to 3 Myr after CAI formation, thus requiring an origin by impact. The relationship between nucleosynthetic Mo isotopic compositions and accretion ages of planetesimals from the NC reservoir suggests that isotopic heterogeneity developed from either addition of s-process material to, or removal of coupled r-/p-process material from the NC reservoir. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available