4.7 Article

Graphene-Templated Cobalt Nanoparticle Embedded Nitrogen-Doped Carbon Nanotubes for Efficient Visible-Light Photocatalysis

Journal

CRYSTAL GROWTH & DESIGN
Volume 20, Issue 7, Pages 4627-4639

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.0c00430

Keywords

-

Funding

  1. Maharishi Markandeshwar (Deemed to be University)

Ask authors/readers for more resources

Visible-light-assisted photocatalysis for the degradation of organic pollutants has recently become an efficient green approach in the field of environmental pollution abatement. Herein, graphene-templated zeolite-imidazolate framework (ZIF-67) derived, Co nanoparticle embedded, nitrogen-doped carbon nanotubes (G-Co-NCNTs) have been developed as a promising, inexpensive, high-yield photocatalyst to decompose reactive black 5 (RB5) under visible light irradiation. Morphology and structural characterization studies revealed that the growth of NCNTs along with pyridinic N content and the abundance of meso-micropores were greater in G-Co-NCNT than in Co-NCNT itself, suggesting the importance of graphene for in situ growth of ZIF-67 on GO. DRS study reveals that G-Co-NCNT exhibited low optical band gap (similar to 2.9 eV), assisting in the promotion of photoresponse behavior. The photocatalytic activity of our designed G-Co-NCNT hybrid showed excellent dye degradation ability (98%) after 60 min with a wide range of pH tolerance and promising reusability even after five cycles (93%) under visible light, while Co-NCNT demonstrated only about 62% dye degradation, further implying the importance of graphene and oriented NCNTs for dye degradation. Therefore, the G-Co-NCNT hybrid could be used as an efficient photocatalyst for the remediation of organic pollutants in wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available