4.6 Article

Preparation of Fe3O4@SiO2@ P(AANa-co-AM) Composites and Their Adsorption for Pb(II)

Journal

ACS OMEGA
Volume 5, Issue 15, Pages 8816-8824

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c00403

Keywords

-

Funding

  1. National Natural Science Foundation of China [21566010, 31760196]

Ask authors/readers for more resources

A series of magnetic composites of sodium polyacrylate and polyacrylamide copolymer [Fe3O4@SiO2@P(AANa-co-AM)] were prepared. The investigation showed that the adsorption efficiency of Pb(II) was the best when the acrylamide/acrylic acid (AM/AA) mass ratio of composites was 5:5. Therefore, the composite of this ratio was selected as the adsorbent to systematically adsorb Pb(II) in aqueous solution. Static adsorption of Pb(II) to the magnetic composites in aqueous solutions was investigated by varying the solution pH and the concentration of Pb(II). The adsorption kinetics and isotherms model of Pb(II) on the Fe3O4@SiO2@P(AANa-co-AM) composites followed a pseudo-second-order model and the Langmuir isotherm model, respectively. When the temperatures were 298.15, 308.15, and 318.15 K, the maximum adsorption capacities of Fe3O4@SiO2@ P(AANa-co-AM) composites were 237.53, 248.14, and 255.10 mg/g, respectively. The thermodynamic study of adsorption showed that the adsorption of Pb(II) on Fe3O4@SiO2@P(AANa-co-AM) composites was a spontaneous endothermic process. The X-ray photoelectron spectroscopy (XPS) analysis showed that the adsorption of Pb(II) was due to the chelation between -COO- and Pb(II). After four adsorption-desorption cycles, the adsorbent can still maintain a high adsorption capacity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available