4.8 Article

Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis

Journal

CHEMSUSCHEM
Volume 9, Issue 6, Pages 588-594

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201501591

Keywords

carbon dioxide; electrochemistry; graphene; molten salt; reduction

Funding

  1. National Natural Science Foundation of China [51322402]
  2. Fundamental Research Funds for the Central Universities [230201406500005]

Ask authors/readers for more resources

Producing graphene through the electrochemical reduction of CO2 remains a great challenge, which requires precise control of the reaction kinetics, such as diffusivities of multiple ions, solubility of various gases, and the nucleation/growth of carbon on a surface. Here, graphene was successfully created from the greenhouse gas CO2 using molten salts. The results showed that CO2 could be effectively fixed by oxygen ions in CaCl2-NaCl-CaO melts to form carbonate ions, and subsequently electrochemically split into graphene on a stainless steel cathode; O-2 gas was produced at the RuO2-TiO2 inert anode. The formation of graphene in this manner can be ascribed to the catalysis of active Fe, Ni, and Cu atoms at the surface of the cathode and the microexplosion effect through evolution of CO in between graphite layers. This finding may lead to a new generation of proceedures for the synthesis of high value-added products from CO2, which may also contribute to the establishment of a low-carbon and sustainable world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available