4.6 Article

The Study of Reverse Water Gas Shift Reaction Activity over Different Interfaces: The Design of Cu-Plate ZnO Model Catalysts

Journal

CATALYSTS
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/catal10050533

Keywords

reverse water-gas shift reaction; CO2 hydrogenation to methanol; Cu doping; direct contact Cu-ZnO interface; ZnOx-Cu NP-ZnO interface

Funding

  1. National Natural Science Foundation of China [21976059, 91645119, 51878292]
  2. Natural Science Foundation of Guangdong Province, China [2019A1515011849]
  3. Guangzhou Science and Technology Plan [201607010095]
  4. State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University [201602]

Ask authors/readers for more resources

CO2 hydrogenation to methanol is one of the main and valuable catalytic reactions applied on Cu/ZnO-based catalysts; the interface formed through Zn migration from ZnO support to the surface of Cu nanoparticle (ZnOx-Cu NP-ZnO) has been reported to account for methanol synthesis from CO2 hydrogenation. However, the accompanied reverse water gas shift (RWGS) reaction significantly decreases methanol selectivity and deactivates catalysts soon. Inhibition of RWGS is thus of great importance to afford high yield of methanol. The clear understanding of the reactivity of RWGS reaction on both the direct contact Cu-ZnO interface and ZnOx-Cu NP-ZnO interface is essential to reveal the low methanol selectivity in CO2 hydrogenation to methanol and look for efficient catalysts for RWGS reaction. Cu doped plate ZnO (ZnO:XCu) model catalysts were prepared through a hydrothermal method to simulate direct contact Cu-ZnO interface and plate ZnO supported 1 wt % Cu (1Cu/ZnO) catalyst was prepared by wet impregnation for comparison in RWGS reaction. Electron paramagnetic resonance (EPR), XRD, SEM, Raman, hydrogen temperature-programmed reduction (H-2-TPR) and CO2 temperature-programmed desorption (CO2-TPD) were employed to characterize these catalysts. The characterization results confirmed that Cu incorporated into ZnO lattice and finally formed direct contact Cu-ZnO interface after H-2 reduction. The catalytic performance revealed that direct contact Cu-ZnO interface displays inferior RWGS reaction reactivity at reaction temperature lower than 500 degrees C, compared with the ZnOx-Cu NP-ZnO interface; however, it is more stable at reaction temperature higher than 500 degrees C, enables ZnO:XCu model catalysts superior catalytic activity to that of 1Cu/ZnO. This finding will facilitate the designing of robust and efficient catalysts for both CO2 hydrogenation to methanol and RWGS reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Cell Biology

Age-related DNA methylation on Y chromosome and their associations with total mortality among Chinese males

Guyanan Li, Chenming Wang, Xin Guan, Yansen Bai, Yue Feng, Wei Wei, Hua Meng, Ming Fu, Meian He, Xiaomin Zhang, Yanjun Lu, Yong Lin, Huan Guo

Summary: This study aimed to investigate the role of sex chromosomes in the aging process and discovered age-related DNA methylation changes on the Y chromosome. The findings suggest that certain methylation levels of specific genes are associated with male aging and all-cause mortality risk.

AGING CELL (2022)

Article Engineering, Mechanical

Experiment and modeling based studies of the mesoscaled deformation and forming limit of Cu/Ni clad foils using a newly developed damage model

Chuanjie Wang, Haiyang Wang, Gang Chen, Qiang Zhu, Peng Zhang, M. W. Fu

Summary: This study develops a new damage model that successfully predicts the forming limit curve of Cu/Ni clad foils by considering size effect and deformation behavior. Experimental results show that void evolution and surface roughness have significant influences on the forming limit of clad foils.

INTERNATIONAL JOURNAL OF PLASTICITY (2022)

Article Automation & Control Systems

Event-triggered-based finite-time cooperative path following control for underactuated multiple marine surface vehicles

Mingyu Fu, Lulu Wang

Summary: This paper proposes an event-triggered-based finite-time cooperative path following control scheme for underactuated marine surface vehicles. By utilizing a finite-time extended state observer and a guidance law based on velocity estimation values, cooperative control of multiple paths is achieved.

ASIAN JOURNAL OF CONTROL (2023)

Article Optics

Analysis of wavy surface effects on the characteristics of wireless optical communication downlinks

Jingjing Qin, Min Fu, Bing Zheng

Summary: This paper investigates the wave surface effect in a wireless optical communication system operating at an air-water interface. A Monte Carlo numerical method is used to develop and simulate an optical model of the system, and the impact of the wave surface, link distance, water turbidity, and receiver parameters on the communication link power is evaluated. The results demonstrate that turbidity and transmission depth can help reduce the fluctuation effect caused by wind-induced power loss. An experiment conducted confirms the reliability of the simulation results.

OPTICS COMMUNICATIONS (2022)

Article Engineering, Environmental

Organophosphate tri- and diesters in source water supply and drinking water treatment systems of a metropolitan city in China

Xiaolan Zhang, Yuhao Bi, Minghui Fu, Xinyu Zhang, Bingli Lei, Xin Huang, Zhenzhen Zhao

Summary: The distribution and removal efficiency of organophosphate ester pollutants vary in water sources and treatment facilities. Some of these esters pose limited ecological risks while others may have potential health implications.

ENVIRONMENTAL GEOCHEMISTRY AND HEALTH (2023)

Article Construction & Building Technology

Integrity Testing of a Platform-Pile System Using a Sensor Array and Wavenumber Domain Analysis

Minghui Fu, Meihong Lin

Summary: In pile integrity tests, the selection of appropriate impact and sensor locations is crucial to prevent three-dimensional effects caused by torsional and flexural modes. This study proposes a multivelocity integrity test method using a sensor array and frequency-wavenumber (FK) domain analysis to eliminate high-frequency interference and reduce errors in test results for platform-pile systems.

ADVANCES IN CIVIL ENGINEERING (2022)

Article Engineering, Manufacturing

Size effects on process performance and product quality in progressive microforming of shafted gears revealed by experiment and numerical modeling

Jun-Yuan Zheng, Hui Liu, Ming-Wang Fu

Summary: In this study, shafted microgears were manufactured using a microforming process. A grain-based modeling approach was used to simulate the forming process and investigate the effects of grain size on forming behavior and process performance. Five deformation zones with different hardness and stress-strain distributions were identified in the microstructures. The undesirable geometries of microgears, such as material unfilling, burr, and inclination, were observed and the inclination size increased with grain size. By redesigning the punch and adding a die insert, the forming quality of the microgears was improved.

ADVANCES IN MANUFACTURING (2023)

Article Biochemistry & Molecular Biology

In Silico Genome-Wide Mining and Analysis of Terpene Synthase Gene Family in Hevea Brasiliensis

Jiahao Liang, De Wang, Xin Li, Weiwen Huang, Chun Xie, Minghui Fu, Hongmei Zhang, Qiong Meng

Summary: In this study, 47 full-length HbTPS genes were identified in the Hevea brasiliensis genome, and they were divided into five subfamilies based on phylogenetic analysis. HbTPSs were found to participate in cellular components, molecular functions, and biological processes, as well as seven secondary metabolite pathways. They may be regulated by phytohormones, as suggested by the presence of cis-acting elements. RNA-Seq analysis revealed tissue-specific expression patterns of different HbTPSs. These findings contribute to understanding the role and molecular mechanism of HbTPSs and the regulation of terpenoid biosynthesis in H.brasiliensis.

BIOCHEMICAL GENETICS (2023)

Article Engineering, Environmental

Economical and Sustainable Synthesis of Small-Pore Chabazite Catalysts for NOx Abatement by Recycling Organic Structure- Directing Agents

Wuwan Xiong, Linhui Liu, Anqi Guo, Dongdong Chen, Yulong Shan, Mingli Fu, Junliang Wu, Daiqi Ye, Peirong Chen

Summary: An economical and sustainable approach for synthesizing SSZ-13 zeolites, key materials for reducing nitrogen oxides (NOx) in automotive exhausts and selective methane conversion, has been reported. The approach involves recycling and reusing waste liquids containing the organic structure-directing agent (OSDA). The waste liquid-derived SSZ-13 zeolites show similar properties to conventionally synthesized ones.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Plant Sciences

Genome-wide identification and expression analysis of NAC family genes in Ginkgo biloba L.

Y. Li, H. Han, M. Fu, X. Zhou, J. Ye, F. Xu, W. Zhang, Y. Liao, X. Yang

Summary: This study analyzed the characteristics and expression patterns of the NAC transcription factor family in Ginkgo biloba using bioinformatics and quantitative reverse transcription PCR. The results showed that NAC transcription factors play important roles in plant growth and development, as well as in response to abiotic stresses and flavonoid biosynthesis in Ginkgo biloba.

PLANT BIOLOGY (2023)

Article Chemistry, Physical

Unravelling the correlation of dielectric barrier discharge power and performance of Pt/CeO2 catalysts for toluene oxidation

Bangfen Wang, Xiufeng Li, Yuhai Sun, Hailin Xiao, Mingli Fu, Shuhua Li, Hong Liang, Zhiwei Qiao, Daiqi Ye

Summary: Pt/CeO2 catalysts were modified with non-thermal plasma to enhance the catalytic activity for toluene oxidation. The plasma treatment affected the Pt particle size, CeO2-rod length, oxygen vacancy concentration, and Pt/CeO2 reducibility. The impact of plasma on Pt atoms was more significant than on oxygen vacancies.

CATALYSIS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Physical

Dielectric barrier discharge plasma modified Pt/CeO2 catalysts for toluene oxidation: Effect of discharge time

Bangfen Wang, Ni Wang, Yuhai Sun, Hailin Xiao, Mingli Fu, Shuhua Li, Hong Liang, Zhiwei Qiao, Daiqi Ye

Summary: This study applied a dielectric barrier discharge plasma to modify the performance of Pt/CeO2 catalyst for toluene oxidation. Different plasma discharge times were used and it was found that discharge time significantly affected the catalytic activity of Pt/CeO2 catalyst. The Pt/CeO2-PT3 (30 min) and Pt/CeO2-PT6 (3 h) catalysts showed improved catalytic activity, while the Pt/CeO2-PT5 (2 h) catalyst exhibited decreased activity due to surface carbon deposition.

APPLIED SURFACE SCIENCE (2023)

Article Chemistry, Applied

The novel chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis aeruginosa and algal organic matter

Jingshu Cui, Xiaojun Niu, Dongqing Zhang, Jinling Ma, Xifen Zhu, Xiaoxian Zheng, Zhang Lin, Mingli Fu

Summary: A novel flocculation strategy using chitosan-amphoteric starch (C-A) dual flocculants was proposed for simultaneously removing Microcystis aeruginosa and algal organic matter (AOM), providing new insights for harmful algal bloom control in an efficient, cost-effective and ecologically friendly way.

CARBOHYDRATE POLYMERS (2023)

Review Materials Science, Multidisciplinary

Gallium-based liquid metal micro/nanoparticles for photothermal cancer therapy

Mingming Fu, Yifeng Shen, Hao Zhou, Xiaojia Liu, Wenjun Chen, Xing Ma

Summary: Gallium-based liquid metals have unique properties that have attracted significant interest in the biomedical field. Photothermal therapy has shown great development in antitumor treatment and the photothermal capability of gallium-based liquid metals provides unparalleled advantages. This review presents the major preparation methods of liquid metal micro/nanoparticles, the mechanism of liquid metal photothermal conversion, and discusses the factors affecting the photothermal properties of liquid metals. The biological applications, challenges, and opportunities for the clinical translation of liquid metals in biomedical applications are also discussed.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Nanoscience & Nanotechnology

Anatomically resolved transcriptome and proteome landscapes reveal disease-relevant molecular signatures and systematic changes in heart function of end-stage dilated cardiomyopathy

Ling Lin, Shanshan Liu, Zhangwei Chen, Yan Xia, Juanjuan Xie, Mingqiang Fu, Danbo Lu, Yuan Wu, Huali Shen, Pengyuan Yang, Juying Qian

Summary: Dilated cardiomyopathy (DCM) is characterized by left ventricular dilatation and contractile dysfunction, and its molecular mechanisms are not fully understood. This study examined the transcriptome and proteome of healthy and DCM myocardial tissue, identifying dysregulated processes such as extracellular matrix, mitochondrial function, and muscle contraction. Furthermore, a 4-biomarker panel (CTSB, vWF, C9, and MFGE8) was developed for the diagnosis of DCM.
No Data Available