4.3 Article

Varying fish scale derived hydroxyapatite bound hybrid peptide nanofiber scaffolds for potential applications in periodontal tissue regeneration

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2019.110540

Keywords

Tissue regeneration; Hydroxyapatite; Peptide nanofibers; Fish scales

Funding

  1. Fordham University Research Grants

Ask authors/readers for more resources

New peptide based hybrid scaffolds were prepared by blending two different fish scale derived hydroxyapatite with functionalized peptide nanofibers for potential applications in periodontal tissue regeneration. The nanofibers were prepared by self-assembly of the newly designed peptide bolaamphiphile Bis (N-alpha-amido-glutamic acid) 1,7 heptane tetracarboxylate and functionalized with a segment of the tyrosine rich amylogenin peptide sequence MPLPPHPGHPGYINF followed by polygalacturnonic acid and hydroxyapatite derived from salmon or red-snapper fish scales. The binding interactions of the components of the scaffold was confirmed by FTIR spectroscopy as well as SEM imaging. Hybrids scaffolds with salmon scale derived HaP showed higher mechanical strength and Young's Modulus compared to snapper scale derived scaffolds. Our results indicated that while both the scaffolds supported cell proliferation and efficiently formed cell-scaffold matrices with gingival fibroblasts, we observed greater alignment of the cells in the case of scaffolds that contained snapper scale derived hydroxyapatite. Furthermore, higher differentiation ability into osteoblast like cells was seen in the case of the snapper scale derived HaP based scaffolds. Our studies indicate that the hybrid peptide nanofiber scaffold matrices, particularly those prepared using snapper scales may have significant utility in the development of biomaterials for periodontal tissue regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Multidisciplinary

Design of peptide-PEG-Thiazole bound polypyrrole supramolecular assemblies for enhanced neuronal cell interactions

Sarah M. Broas, Ipsita A. Banerjee

Summary: The study presented the creation of new biomimetic supramolecular assemblies as a scaffold for potential applications in neural tissue regeneration. The assemblies promoted cell proliferation and interacted favorably with cells, showing potential for applications in neural tissue engineering.

SOFT MATERIALS (2021)

Article Biochemistry & Molecular Biology

Molecular dynamics simulations and in vitro studies of hybrid decellularized leaf-peptide-polypyrrole composites for potential tissue engineering applications

Saige M. Mitchell, Harrison T. Pajovich, Sarah M. Broas, Mindy M. Hugo, Ipsita A. Banerjee

Summary: This study developed a new biomaterial for cardiac tissue engineering applications through a combination of in silico studies and laboratory analyses. The biomaterial showed stable assembly and successful interaction with cardiac tissue cells. In vitro experiments confirmed the scaffold's ability to promote cell proliferation and adhesion.

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS (2023)

Article Materials Science, Biomaterials

MMP inhibition as a novel strategy for extracellular matrix preservation during whole liver decellularization

Mohammadreza Kasravi, Alireza Yaghoobi, Tahereh Tayebi, Mahsa Hojabri, Abdolkarim Talebi Taheri, Fatemeh Shirzad, Bahram Jambar Nooshin, Radman Mazloomnejad, Armin Ahmadi, Fatemeh A. Tehrani, Ghasem Yazdanpanah, Mohammad Hadi Farjoo, Hassan Niknejad

Summary: As a promising approach in translational medicine, the decellularization of discarded livers to produce bioscaffolds that support recellularization has potential in overcoming the limitations of conventional liver transplantation. In this study, the researchers investigated the use of matrix metalloproteinase (MMP) inhibition to preserve the extracellular matrix (ECM) during liver decellularization. The results demonstrated that the application of an MMP inhibitor significantly improved the preservation of ECM components and mechanical properties of the bioscaffolds, which supported cell viability and function in vitro. The study also confirmed that the MMP inhibition led to the inhibition of MMP2 and MMP9, providing a novel method to enhance ECM preservation during liver decellularization.

BIOMATERIALS ADVANCES (2024)

Article Materials Science, Biomaterials

Synthesis of bioactive hemoglobin-based oxygen carrier nanoparticles via metal-phenolic complexation

Mohammadsadegh Nadimifar, Weiguang Jin, Clara Coll-Satue, Gizem Bor, Paul Joseph Kempen, Ali Akbar Moosavi-Movahedi, Leticia Hosta-Rigau

Summary: This study presents a metal-phenolic self-assembly approach that can prepare nanoparticles fully made of hemoglobin. The nanoparticles exhibit good oxygen binding and releasing capabilities.

BIOMATERIALS ADVANCES (2024)

Article Materials Science, Biomaterials

Antifibrotic properties of hyaluronic acid crosslinked polyisocyanide hydrogels

Jyoti Kumari, Roel Hammink, Jochem Baaij, Frank A. D. T. G. Wagener, Paul H. J. Kouwer

Summary: Fibrosis is the formation of fibrous connective tissue in response to injury, leading to organ dysfunction. A novel hybrid hydrogel combining synthetic polyisocyanide with hyaluronic acid has been developed, showing strong antifibrotic properties.

BIOMATERIALS ADVANCES (2024)

Letter Materials Science, Biomaterials

Reply to concerns on Rodrigues et al., Investigation of plasma treatment on UHMWPE surfaces: Impact on physicochemical properties, sterilization and fibroblastic adhesion

Melissa Machado Rodrigues, Cristian Padilha Fontoura, Charlene Silvestrin Celi Garcia, Sandro Tomaz Martins, Joao Antonio Pegas Henriques, Carlos Alejandro Figueroa, Mariana Roesch Ely, Cesar Aguzzoli

BIOMATERIALS ADVANCES (2024)

Article Materials Science, Biomaterials

Radial matrix constraint influences tissue contraction and promotes maturation of bi-layered skin equivalents

Jessica Polak, David Sachs, Nino Scherrer, Adrian Suess, Huan Liu, Mitchell Levesque, Sabine Werner, Edoardo Mazza, Gaetana Restivo, Mirko Meboldt, Costanza Giampietro

Summary: Human skin equivalents (HSEs) play a crucial role in tissue engineering. This study introduces a 3D-printed culture insert to apply a static radial constraint on HSEs and examines its effects on tissue characteristics. The results show that the diameter of the culture insert significantly influences tissue contraction, fibroblast and matrix organization, keratinocyte differentiation, epidermal stratification, and basement membrane formation. This study provides important insights for the design of skin tissue engineering.

BIOMATERIALS ADVANCES (2024)

Review Materials Science, Biomaterials

Methods for improving the properties of zinc for the application of biodegradable vascular stents

Shiliang Chen, Tianming Du, Hanbing Zhang, Jing Qi, Yanping Zhang, Yongliang Mu, Aike Qiao

Summary: This paper reviewed the primary methods for improving the overall properties of biodegradable zinc stents. It discussed the mechanical properties, degradation behavior, and biocompatibility of various improvement strategies. Alloying was found to be the most common, simple, and effective method for improving mechanical properties. Deformation processing and surface modification further improved the mechanical properties and biological activity of zinc alloys. Meanwhile, structural design could endow stents with special properties. Manufacturing zinc alloys with excellent properties and exploring their interaction mechanism with the human body are areas for future research.

BIOMATERIALS ADVANCES (2024)