4.5 Article

F-actin flashes on phagosomes mechanically deform contents for efficient digestion in macrophages

Journal

JOURNAL OF CELL SCIENCE
Volume 133, Issue 12, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.239384

Keywords

Macrophages; Phagocytosis; Complement; Phagosome maturation

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN 2017-06087]
  2. Canadian Institutes of Health Research [PJT-166084]

Ask authors/readers for more resources

The mechanism and role of transient F-actin recruitment, or F-actin 'flashes', on phagosomes remains enigmatic. Here we provide a comprehensive characterization of F-actin flashing dynamics on phagosomes, including receptor and signaling involvement. F-actin flashes predominate during the integrin-driven complement receptor (CR)-mediated phagocytosis. F-actin flashes begin shortly after internalization and persist on phagosomes for approximately 3 minutes before disassembling and reassembling several times within the first hour. Strikingly, the appearance of F-actin flashes on phagosomes coincides with morphological deformation, lysis and occasional fission of internalized red blood cells. The cadence of flashes depends on particle stiffness, and the F-actin networks on phagosomes are enriched in mechanosensitive components including focal adhesion proteins, RhoA and actomyosin. Inhibiting Arp2/3 and myosin IIA activity significantly reduces the frequency at which phagosome cargo becomes deformed during transient F-actin accumulation. At later time points, post-F-actin flashing, enhanced degradation of phagosome contents is observed, compared with non-flashing phagosomes. Taken together, these data suggest that actomyosin-driven phagosome contractions serve to disrupt malleable particles physically, a process akin to mastication, to enhance later enzymatic digestion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available