4.6 Article

Optimizing Lignosulfonic Acid-Grafted Polyaniline as a Hole-Transport Layer for Inverted CH3NH3PbI3 Perovskite Solar Cells

Journal

ACS OMEGA
Volume 5, Issue 4, Pages 1887-1901

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b03451

Keywords

-

Funding

  1. National Science Foundation [1003970, 1457888]
  2. Arkansas EPSCoR Program, ASSET II III

Ask authors/readers for more resources

A conducting polymer of lignosulfonic acid-grafted, polyaniline-doped camphorsulfonic acid (LS-PANI-CSA), created via a low-temperature solution process, has been explored as an efficient hole-transport layer (HTL) for inverted single cation-anion CH3NH3PbI3 perovskite solar cells. The performance of the solar cell was optimized in this study by tuning the morphology and work function of LS-PANI-CSA films using dimethylsulfoxide (DMSO) as a solvent in treatment. Results showed that DMSO washing enhanced the electronic properties of the LS-PANI-CSA film and increased its hydrophobicity, which is very important for perovskite growth. The perovskite active layer deposited onto the DMSO-treated LS-PANI-CSA layer had higher crystallinity with large grain sizes (>5 mu m), more uniform and complete surface coverage, and very low pinhole density and PbI2 residues compared to untreated LS-PANI-CSA. These enhancements result in higher device performance and stability. Using DMSO-treated LS-PANI-CSA as an HTL at 15 nm of thickness, a maximum 10.8% power conversion efficiency was obtained in ITO/LS-PANI-CSA/MAPbI(3)/PCBM/BCP/Ag inverted-device configurations. This was a significant improvement compared to 5.18% for devices based on untreated LS-PANI-CSA and a slight improvement over PEDOT:PSS-based devices with 9.48%. Furthermore, the perovskite based on treated LS-PANI-CSA showed the higher stability compared to both untreated LS-PANI-CSA and PEDOT:PSS HTL-based devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available